Skip to main content
Log in

Nuclear point mass effects in the interaction of energetic ion with carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have calculated deposited energies of various energetic ions in carbon nanotubes, to study nuclear point mass effects, with the help of a static Monte Carlo (MC) simulation program. As a result of nuclear point mass effects, we show that at the same incident energy, the ion-deposited energy maximizes, while its mass has intermediate mass values, such as 11B, 12C and 14N ion masses, under hundreds keV 4He, 11B, 12C, 14N, 20Ne, 28Si and 40Ar ion irradiations of a thin-walled carbon nanotube. We also show that at the same incident energy, the coordination defect number maximizes, while its mass has an intermediate mass (20Ne) value, under hundreds keV 4He, 20Ne and 40Ar ion irradiations of the thin-walled nanotube. We derive an ion-deposited energy formula to analyze these maximum phenomena, and compare the MC simulation results with the MD (molecular dynamics) ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Sigmund, Particle Penetration and Radiation Effects: General Aspects and Stopping of Point Charge (Springer, Berlin, 2006)

    Book  Google Scholar 

  2. P. Sigmund, A. Fettouhi, A. Schinner, Nucl. Instrum. Methods B 209, 19 (2003)

    Article  ADS  Google Scholar 

  3. M.T. Robinson et al., Phys. Rev. 132, 2385 (1963)

    Article  ADS  Google Scholar 

  4. L.P. Zheng et al., Nucl. Instrum. Methods B 269, 1472 (2011)

    Article  ADS  Google Scholar 

  5. J.P. Biersack, L.G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980)

    Article  ADS  Google Scholar 

  6. P. Sigmund, Nucl. Instrum. Methods B18, 375 (1987)

    ADS  Google Scholar 

  7. A.V. Krasheninnikov, K. Nordlund, J. Keincnen, Phys. Rev. B 63, 245405 (2001)

    Article  ADS  Google Scholar 

  8. A.V. Krasheninnikov, K. Nordlund, J. Keincnen, Appl. Phys. Lett. 81, 1101 (2002)

    Article  ADS  Google Scholar 

  9. A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 071301 (2010)

    Article  ADS  Google Scholar 

  10. J. Pomoell, A.V. Krasheninnikov, K. Nordlund, J. Keincnen, J. Appl. Phys. 96, 2864 (2004)

    Article  ADS  Google Scholar 

  11. A. Tolvanen, J. Kotakoski, A.V. Krasheninnikov, K. Nordlund, Appl. Phys. Lett. 91, 173109 (2007)

    Article  ADS  Google Scholar 

  12. L.P. Zheng, Z.Y. Zhu, Y. Li, D.Z. Zhu, H.H. Xia, J. Phys. Chem. C 112, 15204 (2008)

    Article  Google Scholar 

  13. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985)

    Book  Google Scholar 

  14. R. Smith (ed.), Atomic & Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  15. P.M. Echenique, R.M. Nieminen, J.C. Ashley, R.H. Ritchie, Phys. Rev. A 33, 897 (1986)

    Article  ADS  Google Scholar 

  16. P. Stampfli, Nucl. Instrum. Methods B 107, 138 (1996)

    Article  ADS  Google Scholar 

  17. G. Schiwietz, Nucl. Instrum. Methods B 175–177, 1 (2001)

    Article  Google Scholar 

  18. A.E. Volkov, V.A. Borodin, Nucl. Instrum. Methods B 107, 172 (1996)

    Article  ADS  Google Scholar 

  19. L.P. Zheng, R.S. Li, X.Q. Xia, M.Y. Li, Appl. Phys. A 61, 419 (1995)

    ADS  Google Scholar 

  20. L.P. Zheng, Y.G. Ma, J.G. Han, D.X. Li, X.R. Zhang, Phys. Lett. A 324, 211 (2004)

    Article  ADS  Google Scholar 

  21. P. Sigmund, Phys. Rev. 184, 383 (1969)

    Article  ADS  Google Scholar 

  22. L.P. Zheng, Nucl. Instrum. Methods B 142, 30 (1998)

    Article  ADS  Google Scholar 

  23. J. Pomoell, A.V. Krasheninnikov, K. Nordlund, Nucl. Instrum. Methods B206, 18 (2003)

    Article  ADS  Google Scholar 

  24. L. Yan et al., Carbon 46, 376 (2008)

    Article  Google Scholar 

  25. L. Yan et al., Carbon 49, 2141 (2011)

    Article  Google Scholar 

  26. L. Yan et al., Diam. Relat. Mater. 17, 365 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program) No. 2010CB832903 and National Natural Science Foundation of China No. 11375251 and No 11175235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, LP., Yan, L., Zhu, ZY. et al. Nuclear point mass effects in the interaction of energetic ion with carbon nanotubes. Appl. Phys. A 122, 222 (2016). https://doi.org/10.1007/s00339-016-9672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9672-z

Keywords

Navigation