Applied Physics A

, 122:131 | Cite as

Fracture toughness of ultrashort pulse-bonded fused silica

  • S. RichterEmail author
  • F. Naumann
  • F. Zimmermann
  • A. Tünnermann
  • S. Nolte
Invited Paper
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies


We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of \(0.71\,\hbox {MPa}\,\hbox {m}^{1/2}\), about 90 % of the pristine bulk material \(({\approx } 0.8\,\hbox {MPa}\,\hbox {m}^{1/2})\), is obtained.


Fracture Toughness Repetition Rate Weibull Distribution Failure Probability Chevron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support by the German Federal Ministry for Economic Affairs and Energy (BMWi) within the framework of the IGF Project 18630 BR is gratefully acknowledged.


  1. 1.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006)CrossRefGoogle Scholar
  2. 2.
    S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W. Chen, S. Ho, P.R. Herman, Opt. Express 16, 9443 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    C.B. Schaffer, J.F. García, E. Mazur, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. Phys. A 76(3), 351–354 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    S. Richter, S. Döring, A. Tünnermann, S. Nolte, Bonding of glass with femtosecond laser pulses at high repetition rates. Appl. Phys. A Mater. 103(2), 257–261 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 44, 687 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, F. Yoshino, J. Laser Micro Nanoeng. 2, 57 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Itoh, T. Tamaki, Ultrafast laser microwelding for transparent and heterogeneous materials. In Lasers and Applications in Science and Engineering, ed. by International Society for Optics and Photonics, vol. 68810V (International Society for Optics and Photonics, 2008)Google Scholar
  8. 8.
    I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, H. Helvajian, Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses. Opt. Express 19(23), 22961–22973 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, S. Nolte, Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy. Appl. Phys. A Mater. 110(1), 9–15 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, M. Schmidt, Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser. J. Laser Micro Nanoeng. 8(1), 65–69 (2013)CrossRefGoogle Scholar
  11. 11.
    K. Sugioka, M. Iida, H. Takai, K. Micorikawa, Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train. Opt. Lett. 36(14), 2734–2736 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F. Naumann, S. Brand, M. Bernasch, S. Tismer, P. Czurratis, D. Wünsch, M. Petzold, Advanced characterization of glass frit bonded micro-chevron-test samples based on scanning acoustic microscopy. Microsyst. Technol. 19, 1–7 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Petzold, H. Knoll, J. Bagdahn, Strength assessment of wafer-bonded micromechanical components using the micro-chevron test. In Micromachining and Microfabrication, ed. by International Society for Optics and Photonics (International Society for Optics and Photonics, 2001), pp. 133–142Google Scholar
  14. 14.
    C. Dresbach, A. Krombholz, M. Ebert, J. Bagdahn, Mechanical properties of glass frit bonded micro packages. Microsyst. Technol. 12(5), 473–480 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Shinkai, R.C. Bradt, G.E. Rindone, Fracture toughness of fused \(\text{ SiO }_2\) and float glass at elevated temperatures. J. Am. Ceram. Soc. 64(7), 426–430 (1981)CrossRefGoogle Scholar
  16. 16.
    S.M. Wiederhorn, Fracture surface energy of glass. J. Am. Ceram. Soc. 52(2), 99–105 (1969)CrossRefGoogle Scholar
  17. 17.
    F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, S. Nolte, Ultrastable bonding of glass with femtosecond laser bursts. Appl. Opt. 52(6), 1149–1154 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    D. Munz, R.T. Bubsey, J.E. Srawley, Compliance and stress intensity coefficients for short bar specimens with chevron notches. Int. J. Fract. 16(4), 359–374 (1980)CrossRefGoogle Scholar
  19. 19.
    K.R. Brown, F.I. Baratta, Chevron-Notch Fracture Test Experience: Metals and Non-metals, vol. 1172 (ASTM International, 1992)Google Scholar
  20. 20.
    D. Helie, F. Lacroix, R. Vallee, Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding. J. Laser Micro Nanoeng. 7(9), 284–292 (2012)CrossRefGoogle Scholar
  21. 21.
    C.A. Klein, Characteristic strength, Weibull modulus, and failure probability of fused silica glass. Opt. Eng. 48(11), 113401–113401 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Krol, Femtosecond laser modification of glass. J. Non Cryst. Solids 354, 416–424 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Richter
    • 1
    • 2
    Email author
  • F. Naumann
    • 3
  • F. Zimmermann
    • 1
  • A. Tünnermann
    • 1
    • 4
  • S. Nolte
    • 1
    • 4
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.TRUMPF Lasertechnik GmbHDitzingenGermany
  3. 3.Fraunhofer Institute for Microstructure and Systems IMWSHalle (Saale)Germany
  4. 4.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations