Skip to main content
Log in

Developments in the Ni–Nb–Zr amorphous alloy membranes

A review

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg−1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100−x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.E. Amadeo, M.A. Laborde, Int. J. Hydrogen Energy 20(12), 949–956 (1995)

    Article  Google Scholar 

  2. S.-M. Kim, D. Chandra, N. Pal, M. Dolan, W.-M. Chien, J. Lamb, S. Paglieri, T. Flanagan, Int. J. Hydrogen Energy 37, 3904–3913 (2012)

    Article  Google Scholar 

  3. C. Nishimura, M. Komaki, S. Hwang, M. Amano, J. Alloys Compd. 330–332, 902–906 (2002)

    Article  Google Scholar 

  4. H. Hoang, H. Tong, F. Gielens, H. Jansen, M. Elwenspoek, Mater. Lett. 58, 525–528 (2004)

    Article  Google Scholar 

  5. M. Nishikawa, S. Shiraishi, Y. Kawamura, T. Takeishi, J. Nucl. Sci. Technol. T33, 740–780 (1996)

    Google Scholar 

  6. Y. Guo, G. Lu, Y. Wang, R. Wang, Sep. Purif. Technol. 32, 271–279 (2003)

    Article  Google Scholar 

  7. K. Yamakawa, M. Ege, B. Ludescher, M. Hirscher, H. Kronmuller, J. Alloys Compd. 321, 17–23 (2001)

    Article  Google Scholar 

  8. K. Yamakawaa, M. Egeb, M. Hirscherb, B. Ludescherb, H. Kronmullerb, J. Alloys Compd. 393, 5–10 (2005)

    Article  Google Scholar 

  9. K. Yamakawaa, M. Egeb, B. Ludescherb, M. Hirscherb, J. Alloys Compd. 352, 57–59 (2003)

    Article  Google Scholar 

  10. S. Paglieri, J.D. Way, Sep. Purif. Methods 31, 1–169 (2002)

    Article  Google Scholar 

  11. S.A. Steward, Review of hydrogen isotope permeability through metals. US National Laboratory Report, 1983:UCRL-53441

  12. W. Klement, R.H. Willens, P. Duwez, Nature 187, 869 (1960)

    Article  ADS  Google Scholar 

  13. A. Inoue, T. Zhang, T. Masumoto, Mater. Trans., JIM 33, 965 (1989)

    Article  Google Scholar 

  14. A. Inoue, Acta Mater. 48, 279 (2000)

    Article  Google Scholar 

  15. M. Baricco, M. Palumbo, Special issue-bulk metallic glasses. Adv. Eng. Mater. 9(6), 454–467 (2007)

    Article  Google Scholar 

  16. J.W. Phair, R. Donelson, Ind. Eng. Chem. Res. 45, 5657–5674 (2006)

    Article  Google Scholar 

  17. J.W. Phair, S.P.S. Badwal, Sci. Technol. Adv. Mater. 7, 792–805 (2006)

    Article  Google Scholar 

  18. M.D. Dolan, N.C. Dave, A.Y. Ilyushechkin, L.D. Morpeth, K.G. McLennan, J. Membr. Sci. 285, 30–55 (2006)

    Article  Google Scholar 

  19. N.W. Ockwig, T.M. Nenoff, Chem. Rev. 107, 4078–4110 (2007)

    Article  Google Scholar 

  20. F.H.M. Spit, J.W. Drijver, W.C. Turkenburg, S. Radelaar, G. Bambakidis (eds.), Metal Hydrides (Plenum, New York, 1981), pp. 345–360

    Book  Google Scholar 

  21. K. Aoki, A. Horata, T. Masumoto, in Proceedings of the 4th International Conference on Rapidly Quenched Metals 1649 (1981)

  22. R.W. Lin, H.H. Johnson, J. Non-Cryst, Solids 51, 45–56 (1983)

    Google Scholar 

  23. G. Adachi, H. Nagai, J. Shiokawa, J. Less Common Met. 149, 185–191 (1989)

    Article  Google Scholar 

  24. J.O. Ström-Olsen, Y. Zhao, D.H. Ryan, Y. Huai, R.W. Cochrane, J. Less Common Met. 172–174, 922–92728 (1991)

    Article  Google Scholar 

  25. O. Yoshinari, R. Kirchheim, J. Less Common Met. 172–174, 890–898 (1991)

    Article  Google Scholar 

  26. S.L.I. Chan, C.I. Chiang, J. Alloys Compd. 253–254, 370–373 (1997)

    Article  Google Scholar 

  27. S. Hara, K. Sakaki, N. Itoh, H.-M. Kimura, K. Asami, A. Inoue, J. Membr. Sci. 164, 289–294 (2000)

    Article  Google Scholar 

  28. H. Kimura, A. Inoue, S.-I. Yamaura, K. Sasamori, M. Nishida, Y. Shinpo, H. Okouchi, Mater. Trans., JIM 44, 1167–1171 (2003)

    Article  Google Scholar 

  29. S.-I. Yamaura, Y. Shimpo, H. Okouchi, M. Nishida, O. Kajita, H. Kimura, A. Inoue, Mater. Trans., JIM 44, 1885–1890 (2003)

    Article  Google Scholar 

  30. S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura, A. Inoue, Desalination 144, 115–120 (2002)

    Article  Google Scholar 

  31. S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura, A. Inoue, J. Membr. Sci. 211, 149–156 (2003)

    Article  Google Scholar 

  32. S.-I. Yamaura, Y. Shimpo, H. Okouchi, M. Nishida, O. Kajita, A. Inoue, Mater. Trans., JIM 45, 330–333 (2004)

    Article  Google Scholar 

  33. S.-I. Yamaura, S. Nakata, H. Kimura, Y. Shimpo, M. Nishida, A. Inoue, Mater. Trans. 46(8), 1768–1770 (2005)

    Article  Google Scholar 

  34. K. Ishikawa, T. Takano, T. Matsuda, K. Aoki, Appl. Phys. Lett. 87, 081906 (2005)

    Article  ADS  Google Scholar 

  35. Y. Shimpo, S.-I. Yamaura, M. Nishida, H. Kimura, A. Inoue, J. Membr. Sci. 286, 170–173 (2006)

    Article  Google Scholar 

  36. S.-I. Yamaura, S. Nakata, H. Kimura, A. Inoue, Mater. Trans., JIM 47, 2991–2996 (2006)

    Article  Google Scholar 

  37. K.B. Kim, K.D. Kim, D.Y. Lee, Y.C. Kim, E. Fleury, D.H. Kim, Mater. Sci. Eng., A 449–451, 934–936 (2007)

    Article  Google Scholar 

  38. S. Hara, H.-X. Huang, M. Ishitsuka, M. Mukaida, K. Haraya, N. Itoh, K. Kita, K. Kato, J. Alloy. Compd. 458, 307–312 (2008)

    Article  Google Scholar 

  39. S. Hara, M. Ishitsuka, H. Suda, M. Mukaida, K. Haraya, J. Phys. Chem. B 113, 9795–9801 (2009)

    Article  Google Scholar 

  40. D.-Y. Lee, E. Fleury, Met. Mater. Int. 14, 545–548 (2008)

    Article  Google Scholar 

  41. J.B. Qiang, W. Zhang, S. Yamaura, A. Inoue, Mater. Trans., JIM 50, 1236–1239 (2009)

    Article  Google Scholar 

  42. M.D. Dolan, N.C. Dave, L.D. Morpeth, R. Donelson, D. Liang, M.E. Kellam, S. Song, J. Membr. Sci. 326, 549–555 (2009)

    Article  Google Scholar 

  43. M.D. Dolan, S. Hara, N.C. Dave, K. Haraya, M. Ishitsuka, K. Kita, K.G. McLennan, L.D. Morpeth, M. Mukaida, Sep. Purif. Technol. 65, 298–304 (2009)

    Article  Google Scholar 

  44. D.M. Viano, M.D. Dolan, F. Weiss, A. Adibhatla, J. Membr. Sci. 487, 83–89 (2015)

    Article  Google Scholar 

  45. A. Adibhatla, M.D. Dolan, W. Chien, D. Chandra, J. Membr. Sci. 463, 190–195 (2014)

    Article  Google Scholar 

  46. H.Y. Ding, W. Zhang, S.I. Yamaura, K.F. Yao, Mater. Trans., JIM 54, 1330–1334 (2013)

    Article  Google Scholar 

  47. S. Paglieri, N. Pal, M. Dolan, S. Kim, W. Chien, J. Membr. Sci. 378, 42–50 (2011)

    Article  Google Scholar 

  48. R.E. Buxbaum, T.L. Marker, J. Membr. Sci. 85, 29–38 (1993)

    Article  Google Scholar 

  49. S.-I. Yamaura, A. Inoue, J. Membr. Sci. 349, 138–144 (2010)

    Article  Google Scholar 

  50. A.E. Lewis, H. Zhao, H. Syed, C.A. Wolden, J.D. Way, J. Membr. Sci. 465, 167–176 (2014)

    Article  Google Scholar 

  51. W.C. Chian, W.D. Yeh, J.K. Wu, Mater. Lett. 59, 2542–2544 (2005)

    Article  Google Scholar 

  52. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  53. T. Ozawa, J. Therm. Anal. 2, 301 (1970)

    Article  Google Scholar 

  54. S.-M. Kim, W.-M. Chien, D. Chandra, N.K. Pal, A. Talekar, J. Lamb, M.D. Dolan, S.N. Paglieri, T.B. Flanagan, J. Non-Cryst, Solids 358, 1165–1170 (2012)

    Google Scholar 

  55. S. Jayalakshmi, Y.G. Choi, Y.C. Kim, Y.B. Kim, E. Fleury, Intermetallics 18, 1988–1993 (2010)

    Article  Google Scholar 

  56. S. Jayalakshmi, V.S. Vasantha, E. Fleury, M. Gupta, Appl. Energy 90, 94–99 (2012)

    Article  Google Scholar 

  57. S. Jayalakshmi, S.O. Park, K.B. Kima, E. Fleury, D.H. Kim, Mat. Sci. Eng. A 449–451, 920–923 (2007)

    Article  Google Scholar 

  58. Y. Zhao, I.-C. Choi, M.-Y. Seok, U. Ramamurty, J. Suh, J.-I. Jang, Scr. Mater. 93, 56–59 (2014)

    Article  Google Scholar 

  59. Y. Zhao, I.-C. Choi, M.-Y. Seok, M.-H. Kim, D.-H. Kim, U. Ramamurty, J. Suh, J.-I. Jang, Acta Mater. 78, 213–221 (2014)

    Article  Google Scholar 

  60. O. Palumbo, S. Brutti, F. Trequattrini, S. Sarker, M. Dolan, D. Chandra, A. Paolone, Energies 8, 3944–3954 (2015). doi:10.3390/en8053944

    Article  Google Scholar 

  61. S.-I. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Acta Mater. 53, 3703–3711 (2005)

    Article  Google Scholar 

  62. M. Sakurai, S. Yamaura, K. Wakoh, E. Matsubara, A. Inoue, J. Metastable Nanocryst. Mater. 24–25, 551–554 (2005)

    Article  Google Scholar 

  63. H. Oji, K. Handa, J. Ide, T. Honma, N. Umesaki, S. Yamaura, M. Fukuhara, A. Inoue, S. Emura, J. Phys. Conf. Series 190, 012075-1 (2009)

    Article  ADS  Google Scholar 

  64. H. Oji, K. Handa, J. Ide, T. Honma, S. Yamaura, A. Inoue, N. Umesaki, J. Appl. Phys. 105, 113527-1 (2010)

    ADS  Google Scholar 

  65. M. Fukuhara, N. Fujima, H. Oji, A. Inoue, S. Emura, J. Alloys Compd. 497, 182–187 (2010)

    Article  Google Scholar 

  66. M. Matsuura, M. Fukuhara, K. Konno, T. Fujita, M.W. Chen, N. Fujima, A. Inoue, J. Non-Cryst. Solids 357, 3357–3360 (2011)

    Article  ADS  Google Scholar 

  67. N. Fujima, T. Hoshino, M. Fukuhara, J. Appl. Phys. 114, 063501-1 (2013)

    Article  ADS  Google Scholar 

  68. T. Tokunaga, S. Matsumoto, H. Ohtani, M. Haesebe, Mater. Trans., JIM 48, 2263–2271 (2007)

    Article  Google Scholar 

  69. S. Hao, D.S. Sholl, J. Membr. Sci. 350, 402–409 (2010)

    Article  Google Scholar 

  70. M. Fukuhara, A. Inoue, Phys. B 405, 3630–3632 (2010)

    Article  ADS  Google Scholar 

  71. M. Fukuhara, A. Inoue, J. Appl. Phys. 105, 063715 (2009)

    Article  ADS  Google Scholar 

  72. M. Fukuhara, H. Yoshida, K. Koyama, A. Inoue, Y. Miura, J. Appl. Phys. 107, 033701–033705 (2010)

    Article  ADS  Google Scholar 

  73. M. Fukuhara, H. Yoshida, A. Inoue, N. Fujima, Intermetallic 80, 1864–1866 (2010)

    Article  Google Scholar 

  74. D. Chandra, Behavior of Ni–Nb–Zr alloy gas permeation membrane ribbons at extreme pressure condition, 2014 Yearly Report on US DOE Contract No. DE-NA0002004 May 13, (2014)

  75. D. Chandra, Behavior of Ni–Nb–Zr alloy gas permeation membrane ribbons at extreme pressure condition, 2015 Yearly Report on USDOE Contract No. DE-NA0002004 August 18, (2015)

Download references

Acknowledgments

This research is supported by US DOE-NNSA Grant (US DE-NA0002004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, S., Chandra, D., Hirscher, M. et al. Developments in the Ni–Nb–Zr amorphous alloy membranes. Appl. Phys. A 122, 168 (2016). https://doi.org/10.1007/s00339-016-9650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9650-5

Keywords

Navigation