Applied Physics A

, 122:168 | Cite as

Developments in the Ni–Nb–Zr amorphous alloy membranes

A review
  • S. Sarker
  • D. ChandraEmail author
  • M. Hirscher
  • M. Dolan
  • D. Isheim
  • J. Wermer
  • D. Viano
  • M. Baricco
  • T. J. Udovic
  • D. Grant
  • O. Palumbo
  • A. Paolone
  • R. Cantelli
Invited Paper
Part of the following topical collections:
  1. Hydrogen-based energy storage


Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg−1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100−x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.


Amorphous Alloy Bulk Metallic Glass Permeation Rate Pressure Swing Adsorption Atom Probe Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by US DOE-NNSA Grant (US DE-NA0002004).


  1. 1.
    N.E. Amadeo, M.A. Laborde, Int. J. Hydrogen Energy 20(12), 949–956 (1995)CrossRefGoogle Scholar
  2. 2.
    S.-M. Kim, D. Chandra, N. Pal, M. Dolan, W.-M. Chien, J. Lamb, S. Paglieri, T. Flanagan, Int. J. Hydrogen Energy 37, 3904–3913 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Nishimura, M. Komaki, S. Hwang, M. Amano, J. Alloys Compd. 330–332, 902–906 (2002)CrossRefGoogle Scholar
  4. 4.
    H. Hoang, H. Tong, F. Gielens, H. Jansen, M. Elwenspoek, Mater. Lett. 58, 525–528 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Nishikawa, S. Shiraishi, Y. Kawamura, T. Takeishi, J. Nucl. Sci. Technol. T33, 740–780 (1996)Google Scholar
  6. 6.
    Y. Guo, G. Lu, Y. Wang, R. Wang, Sep. Purif. Technol. 32, 271–279 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Yamakawa, M. Ege, B. Ludescher, M. Hirscher, H. Kronmuller, J. Alloys Compd. 321, 17–23 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Yamakawaa, M. Egeb, M. Hirscherb, B. Ludescherb, H. Kronmullerb, J. Alloys Compd. 393, 5–10 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Yamakawaa, M. Egeb, B. Ludescherb, M. Hirscherb, J. Alloys Compd. 352, 57–59 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Paglieri, J.D. Way, Sep. Purif. Methods 31, 1–169 (2002)CrossRefGoogle Scholar
  11. 11.
    S.A. Steward, Review of hydrogen isotope permeability through metals. US National Laboratory Report, 1983:UCRL-53441Google Scholar
  12. 12.
    W. Klement, R.H. Willens, P. Duwez, Nature 187, 869 (1960)ADSCrossRefGoogle Scholar
  13. 13.
    A. Inoue, T. Zhang, T. Masumoto, Mater. Trans., JIM 33, 965 (1989)CrossRefGoogle Scholar
  14. 14.
    A. Inoue, Acta Mater. 48, 279 (2000)CrossRefGoogle Scholar
  15. 15.
    M. Baricco, M. Palumbo, Special issue-bulk metallic glasses. Adv. Eng. Mater. 9(6), 454–467 (2007)CrossRefGoogle Scholar
  16. 16.
    J.W. Phair, R. Donelson, Ind. Eng. Chem. Res. 45, 5657–5674 (2006)CrossRefGoogle Scholar
  17. 17.
    J.W. Phair, S.P.S. Badwal, Sci. Technol. Adv. Mater. 7, 792–805 (2006)CrossRefGoogle Scholar
  18. 18.
    M.D. Dolan, N.C. Dave, A.Y. Ilyushechkin, L.D. Morpeth, K.G. McLennan, J. Membr. Sci. 285, 30–55 (2006)CrossRefGoogle Scholar
  19. 19.
    N.W. Ockwig, T.M. Nenoff, Chem. Rev. 107, 4078–4110 (2007)CrossRefGoogle Scholar
  20. 20.
    F.H.M. Spit, J.W. Drijver, W.C. Turkenburg, S. Radelaar, G. Bambakidis (eds.), Metal Hydrides (Plenum, New York, 1981), pp. 345–360CrossRefGoogle Scholar
  21. 21.
    K. Aoki, A. Horata, T. Masumoto, in Proceedings of the 4th International Conference on Rapidly Quenched Metals 1649 (1981)Google Scholar
  22. 22.
    R.W. Lin, H.H. Johnson, J. Non-Cryst, Solids 51, 45–56 (1983)Google Scholar
  23. 23.
    G. Adachi, H. Nagai, J. Shiokawa, J. Less Common Met. 149, 185–191 (1989)CrossRefGoogle Scholar
  24. 24.
    J.O. Ström-Olsen, Y. Zhao, D.H. Ryan, Y. Huai, R.W. Cochrane, J. Less Common Met. 172–174, 922–92728 (1991)CrossRefGoogle Scholar
  25. 25.
    O. Yoshinari, R. Kirchheim, J. Less Common Met. 172–174, 890–898 (1991)CrossRefGoogle Scholar
  26. 26.
    S.L.I. Chan, C.I. Chiang, J. Alloys Compd. 253–254, 370–373 (1997)CrossRefGoogle Scholar
  27. 27.
    S. Hara, K. Sakaki, N. Itoh, H.-M. Kimura, K. Asami, A. Inoue, J. Membr. Sci. 164, 289–294 (2000)CrossRefGoogle Scholar
  28. 28.
    H. Kimura, A. Inoue, S.-I. Yamaura, K. Sasamori, M. Nishida, Y. Shinpo, H. Okouchi, Mater. Trans., JIM 44, 1167–1171 (2003)CrossRefGoogle Scholar
  29. 29.
    S.-I. Yamaura, Y. Shimpo, H. Okouchi, M. Nishida, O. Kajita, H. Kimura, A. Inoue, Mater. Trans., JIM 44, 1885–1890 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura, A. Inoue, Desalination 144, 115–120 (2002)CrossRefGoogle Scholar
  31. 31.
    S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura, A. Inoue, J. Membr. Sci. 211, 149–156 (2003)CrossRefGoogle Scholar
  32. 32.
    S.-I. Yamaura, Y. Shimpo, H. Okouchi, M. Nishida, O. Kajita, A. Inoue, Mater. Trans., JIM 45, 330–333 (2004)CrossRefGoogle Scholar
  33. 33.
    S.-I. Yamaura, S. Nakata, H. Kimura, Y. Shimpo, M. Nishida, A. Inoue, Mater. Trans. 46(8), 1768–1770 (2005)CrossRefGoogle Scholar
  34. 34.
    K. Ishikawa, T. Takano, T. Matsuda, K. Aoki, Appl. Phys. Lett. 87, 081906 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Shimpo, S.-I. Yamaura, M. Nishida, H. Kimura, A. Inoue, J. Membr. Sci. 286, 170–173 (2006)CrossRefGoogle Scholar
  36. 36.
    S.-I. Yamaura, S. Nakata, H. Kimura, A. Inoue, Mater. Trans., JIM 47, 2991–2996 (2006)CrossRefGoogle Scholar
  37. 37.
    K.B. Kim, K.D. Kim, D.Y. Lee, Y.C. Kim, E. Fleury, D.H. Kim, Mater. Sci. Eng., A 449–451, 934–936 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Hara, H.-X. Huang, M. Ishitsuka, M. Mukaida, K. Haraya, N. Itoh, K. Kita, K. Kato, J. Alloy. Compd. 458, 307–312 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Hara, M. Ishitsuka, H. Suda, M. Mukaida, K. Haraya, J. Phys. Chem. B 113, 9795–9801 (2009)CrossRefGoogle Scholar
  40. 40.
    D.-Y. Lee, E. Fleury, Met. Mater. Int. 14, 545–548 (2008)CrossRefGoogle Scholar
  41. 41.
    J.B. Qiang, W. Zhang, S. Yamaura, A. Inoue, Mater. Trans., JIM 50, 1236–1239 (2009)CrossRefGoogle Scholar
  42. 42.
    M.D. Dolan, N.C. Dave, L.D. Morpeth, R. Donelson, D. Liang, M.E. Kellam, S. Song, J. Membr. Sci. 326, 549–555 (2009)CrossRefGoogle Scholar
  43. 43.
    M.D. Dolan, S. Hara, N.C. Dave, K. Haraya, M. Ishitsuka, K. Kita, K.G. McLennan, L.D. Morpeth, M. Mukaida, Sep. Purif. Technol. 65, 298–304 (2009)CrossRefGoogle Scholar
  44. 44.
    D.M. Viano, M.D. Dolan, F. Weiss, A. Adibhatla, J. Membr. Sci. 487, 83–89 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Adibhatla, M.D. Dolan, W. Chien, D. Chandra, J. Membr. Sci. 463, 190–195 (2014)CrossRefGoogle Scholar
  46. 46.
    H.Y. Ding, W. Zhang, S.I. Yamaura, K.F. Yao, Mater. Trans., JIM 54, 1330–1334 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Paglieri, N. Pal, M. Dolan, S. Kim, W. Chien, J. Membr. Sci. 378, 42–50 (2011)CrossRefGoogle Scholar
  48. 48.
    R.E. Buxbaum, T.L. Marker, J. Membr. Sci. 85, 29–38 (1993)CrossRefGoogle Scholar
  49. 49.
    S.-I. Yamaura, A. Inoue, J. Membr. Sci. 349, 138–144 (2010)CrossRefGoogle Scholar
  50. 50.
    A.E. Lewis, H. Zhao, H. Syed, C.A. Wolden, J.D. Way, J. Membr. Sci. 465, 167–176 (2014)CrossRefGoogle Scholar
  51. 51.
    W.C. Chian, W.D. Yeh, J.K. Wu, Mater. Lett. 59, 2542–2544 (2005)CrossRefGoogle Scholar
  52. 52.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  53. 53.
    T. Ozawa, J. Therm. Anal. 2, 301 (1970)CrossRefGoogle Scholar
  54. 54.
    S.-M. Kim, W.-M. Chien, D. Chandra, N.K. Pal, A. Talekar, J. Lamb, M.D. Dolan, S.N. Paglieri, T.B. Flanagan, J. Non-Cryst, Solids 358, 1165–1170 (2012)Google Scholar
  55. 55.
    S. Jayalakshmi, Y.G. Choi, Y.C. Kim, Y.B. Kim, E. Fleury, Intermetallics 18, 1988–1993 (2010)CrossRefGoogle Scholar
  56. 56.
    S. Jayalakshmi, V.S. Vasantha, E. Fleury, M. Gupta, Appl. Energy 90, 94–99 (2012)CrossRefGoogle Scholar
  57. 57.
    S. Jayalakshmi, S.O. Park, K.B. Kima, E. Fleury, D.H. Kim, Mat. Sci. Eng. A 449–451, 920–923 (2007)CrossRefGoogle Scholar
  58. 58.
    Y. Zhao, I.-C. Choi, M.-Y. Seok, U. Ramamurty, J. Suh, J.-I. Jang, Scr. Mater. 93, 56–59 (2014)CrossRefGoogle Scholar
  59. 59.
    Y. Zhao, I.-C. Choi, M.-Y. Seok, M.-H. Kim, D.-H. Kim, U. Ramamurty, J. Suh, J.-I. Jang, Acta Mater. 78, 213–221 (2014)CrossRefGoogle Scholar
  60. 60.
    O. Palumbo, S. Brutti, F. Trequattrini, S. Sarker, M. Dolan, D. Chandra, A. Paolone, Energies 8, 3944–3954 (2015). doi: 10.3390/en8053944 CrossRefGoogle Scholar
  61. 61.
    S.-I. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Acta Mater. 53, 3703–3711 (2005)CrossRefGoogle Scholar
  62. 62.
    M. Sakurai, S. Yamaura, K. Wakoh, E. Matsubara, A. Inoue, J. Metastable Nanocryst. Mater. 24–25, 551–554 (2005)CrossRefGoogle Scholar
  63. 63.
    H. Oji, K. Handa, J. Ide, T. Honma, N. Umesaki, S. Yamaura, M. Fukuhara, A. Inoue, S. Emura, J. Phys. Conf. Series 190, 012075-1 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    H. Oji, K. Handa, J. Ide, T. Honma, S. Yamaura, A. Inoue, N. Umesaki, J. Appl. Phys. 105, 113527-1 (2010)ADSGoogle Scholar
  65. 65.
    M. Fukuhara, N. Fujima, H. Oji, A. Inoue, S. Emura, J. Alloys Compd. 497, 182–187 (2010)CrossRefGoogle Scholar
  66. 66.
    M. Matsuura, M. Fukuhara, K. Konno, T. Fujita, M.W. Chen, N. Fujima, A. Inoue, J. Non-Cryst. Solids 357, 3357–3360 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    N. Fujima, T. Hoshino, M. Fukuhara, J. Appl. Phys. 114, 063501-1 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    T. Tokunaga, S. Matsumoto, H. Ohtani, M. Haesebe, Mater. Trans., JIM 48, 2263–2271 (2007)CrossRefGoogle Scholar
  69. 69.
    S. Hao, D.S. Sholl, J. Membr. Sci. 350, 402–409 (2010)CrossRefGoogle Scholar
  70. 70.
    M. Fukuhara, A. Inoue, Phys. B 405, 3630–3632 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    M. Fukuhara, A. Inoue, J. Appl. Phys. 105, 063715 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    M. Fukuhara, H. Yoshida, K. Koyama, A. Inoue, Y. Miura, J. Appl. Phys. 107, 033701–033705 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    M. Fukuhara, H. Yoshida, A. Inoue, N. Fujima, Intermetallic 80, 1864–1866 (2010)CrossRefGoogle Scholar
  74. 74.
    D. Chandra, Behavior of Ni–Nb–Zr alloy gas permeation membrane ribbons at extreme pressure condition, 2014 Yearly Report on US DOE Contract No. DE-NA0002004 May 13, (2014)Google Scholar
  75. 75.
    D. Chandra, Behavior of Ni–Nb–Zr alloy gas permeation membrane ribbons at extreme pressure condition, 2015 Yearly Report on USDOE Contract No. DE-NA0002004 August 18, (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Materials Science and EngineeringUniversity of NevadaRenoUSA
  2. 2.Max-Planck-Institut für Intelligente SystemeStuttgartGermany
  3. 3.CSIRO, QCAT, EnergyPullenvaleAustralia
  4. 4.Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  5. 5.Los Alamos National LaboratoryLos AlamosUSA
  6. 6.Department of Chemistry and NISUniversity of TurinTurinItaly
  7. 7.National Institute of Standards and TechnologyGaithersburgUSA
  8. 8.University of NottinghamNottinghamUK
  9. 9.CNR-ISC, U.O.S. La SapienzaRomeItaly
  10. 10.University of Rome, La SapienzaRomaItaly

Personalised recommendations