Applied Physics A

, 122:194 | Cite as

Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass

  • X. W. Wang
  • R. Buividas
  • F. Funabiki
  • P. R. Stoddart
  • H. Hosono
  • S. Juodkazis
Invited Paper
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies


Colour centres in KBr and defects in silica glass were formed by focused femtosecond laser pulses. It is shown that under simple laser exposure, KBr develops a similar colouration as that achieved with electron and ion bombardment or high-energy X-ray irradiation. The three-dimensional (3D) character of direct laser writing in the volume of KBr allows a new level of control in the spatial arrangement of colour centres and defects. Five different colour centres were identified in KBr through the absorption spectrum; they have different charge and vacancy distribution configurations. The densities of the V- and F-centres were estimated to be 3.9 × 1019 and 3.4 × 1019 cm−3 using Smakula’s formula. In silica, a high density of paramagnetic E′ centres ~1.9 × 1020 cm−3 was determined by quantitative electron spin resonance spectroscopy. Birefringence due to colour centres and laser-induced defects was measured using Stokes polarimetry. In the case of colour centres in KBr, retardation in excess of 0.05\(\pi\) was determined throughout the visible spectrum from 400 to 800 nm. The use of polariscopy for analysis of high-pressure and high-temperature phase formation induced by 3D laser structuring is discussed.


Electron Spin Resonance Colour Centre Indigo Blue Critical Plasma Density Front Tilt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SJ is grateful for partial support via the Australian Research Council Discovery Project DP130101205 and fs-laser fabrication set-up via a technology transfer project with Altechna Ltd.


  1. 1.
    M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348(6242), 455–1460 (2015)CrossRefGoogle Scholar
  2. 2.
    P.F. McMillan, New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    A. Gleason, C. Bolme, H. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. Kraus, J. Eggert, D. Fratanduono, G. Collins, R. Sandberg, W. Yang, W. Mao, Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    L. Rapp, B. Haberl, C. Pickard, J. Bradby, E. Gamaly, J. Williams, A. Rode, Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 7555 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A. Rode, S. Juodkazis, Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion. Nat. Commun. 2, 445 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    R. Drake, High-energy-density physics. Phys. Today 63, 28–33 (2010)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Ono, A.R. Oganov, T. Koyama, H. Shimizu, Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle. Earth Planet. Sci. Lett. 246, 326–335 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A.R. Oganov, S. Ono, The high pressure phase of alumina and implications for Earth’s D layer. Proc. Natl. Acad. Sci. 102, 10828–10831 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    L.B. Fletcher, H.J. Lee, T. Döppner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D.A. Chapman, D.O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R.W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J.B. Hastings, S.H. Glenzer, Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photonics 9, 274–279 (2015)ADSGoogle Scholar
  10. 10.
    Y. Xu, T.J. Shankland, B.T. Poe, Laboratory-based electrical conductivity in the Earth’s mantle. J. Geophys. Res. 105, 27865–27875 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Shimotsuma, P. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 1–4 (2003)CrossRefGoogle Scholar
  12. 12.
    C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett. 106, 123901 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26(5), 277–279 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98(20), 201101 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    O.M. Efimov, K. Gabel, S.V. Garnov, L.B. Glebov, S. Grantham, M. Richardson, M.J. Soileau, Color-center generation in silicate glasses exposed to infrared femtosecond pulses. J. Opt. Soc. Am. B 15, 193 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    J. Dickinson, S. Orlando, S. Avanesyan, S. Langford, Color center formation in soda lime glass and NaCl single crystals with femtosecond laser pulses. Appl. Phys. A 79, 859–864 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    L.C. Courrol, R.E. Samad, L. Gomez, I.M. Ranieri, S.L. Baldochi, A.Z. de Freitas, N.D. Vieira, Color center production by femtosecond pulse laser irradiation in LiF crystals. Opt. Express 12(2), 288 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A Pure Appl. 11, 013001 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Bellouard, A.A. Said, P. Bado, Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica. Opt. Express 13(17), 6635 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    T. Sugiyama, H. Fujiwara, T. Suzuki, K. Tanimura, Femtosecond time-resolved spectroscopy of self-trapping processes of holes and electron-hole pairs in alkali bromide crystals. Phys. Rev. B 54, 15109–15119 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    J.B. Lonzaga, S.M. Avanesyan, S.C. Langford, J.T. Dickinson, Color center formation in soda-lime glass with femtosecond laser pulses. J. Appl. Phys. 94, 4332 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    J. Dickinson, S. Langford, S. Avanesyan, S. Orlando, Color center formation in KCl and KBr single crystals with femtosecond laser pulses. Appl. Surf. Sci. 253, 7874–7878 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    L.I. Bryukvina, S.V. Lipko, V. Kuznetsov, E.F. Martynovich, Structural changes accompanying color center formation in lithium fluoride exposed to femtosecond laser pulses. Inorg. Mater. 50, 625–630 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Watanabe, H.-B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, H. Misawa, Three-dimensional optical data storage in vitreous silica. Jpn. J. Appl. Phys. 27(12B), L1527–L1530 (1998)CrossRefGoogle Scholar
  25. 25.
    H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J. Phys. Chem. B 2000(104), 3450–3455 (2000)CrossRefGoogle Scholar
  26. 26.
    E.J. Caine, Optical data storage in LiF using electron beam encoding. J. Vac. Sci. Technol. B 16, 3232 (1998)CrossRefGoogle Scholar
  27. 27.
    V.V. Ter-Mikirtychev, T. Tsuboi, Stable room-temperature tunable color center lasers and passive Q-switchers. Prog. Quantum Electron. 20, 219–268 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    L. Nony, E. Gnecco, A. Baratoff, A. Alkauskas, R. Bennewitz, O. Pfeiffer, S. Maier, A. Wetzel, E. Meyer, C. Gerber, Observation of individual molecules trapped on a nanostructured insulator. Nano Lett. 4, 2185–2189 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J.-E. Nimsch, J. Wachtveitl, LiF, an underestimated supercontinuum source in femtosecond transient. Opt. Express 21(14), 17060–17065 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    K. Ambal, A. Payne, D.P. Waters, C.C. Williams, C. Boehme, Spin-relaxation dynamics of E′ centers at high density in SiO2 thin films for single-spin tunneling force microscopy. Phys. Rev. Appl. 4, 024008 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, O. Utéza, Long-wavelength multiphoton ionization inside band-gap solids. Phys. Rev. B 88, 195135 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    H.G. Berry, G. Gabrielse, A.E. Livingston, Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200 (1977)ADSCrossRefGoogle Scholar
  33. 33.
    E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, W. Krolokowski, Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal. Phys. Rev. B 81(5), 054113 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    T. Kudrius, G. Šlekys, S. Juodkazis, Surface-texturing of sapphire by femtosecond laser pulses for photonic applications. J. Phys. D Appl. Phys. 43(14), 145501 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    F. Seitz, Color centers in alkali halide crystals. II. Rev. Mod. Phys. 26, 7–94 (1954)ADSCrossRefGoogle Scholar
  36. 36.
    H. Ivey, Spectral location of the absorption due to color centers in alkali halide crystals. Phys. Rev. 72, 341–343 (1947)ADSCrossRefGoogle Scholar
  37. 37.
    R. Casler, P. Pringsheim, P. Yuster, V-centers in alkali halides. J. Chem. Phys. 18(12), 1564 (1950)ADSCrossRefGoogle Scholar
  38. 38.
    T.J. Neubert, S. Susman, M centers in potassium bromide. I. J. Chem. Phys. 43(8), 2819 (1965)ADSCrossRefGoogle Scholar
  39. 39.
    D.Y. Smith, G. Graham, Oscillator strengths of defects in insulators: the generalization of Smakula’s equation. J. Phys. Colloq. 41(C6), 80–83 (1980)CrossRefGoogle Scholar
  40. 40.
    S. Juodkazis, Optical properties of femtosecond irradiated photo-thermo-refractive glass. Lith. J. Phys. 42(2), 119–126 (2002)Google Scholar
  41. 41.
    S.C. Jain, V.K. Jain, Optical and thermal stability, half-widths and oscillator strengths of f-aggregate bands in highly pure kbr crystals. J. Phys. C Solid State Phys. 1(4), 895 (1968)ADSCrossRefGoogle Scholar
  42. 42.
    G. Petite, P. Daguzan, S. Guizard, P. Martin, Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study. Nucl. Instrum. Methods Phys. Res. B 107(1–4), 97–101 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    H. Hosono, Y. Abe, H. Imagawa, H. Imai, K. Arai, Experimental evidence for the Si–Si bond model of the 7.6 eV band in glass. Phys. Rev. B 44(21), 12043–12045 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    M. Cannas, F.M. Gelardi, F. Pullara, M. Barbera, A. Collura, S. Varisco, Absorption band at 7.6 eV induced by λ-irradiation in silica glasses. J. Non-Cryst. Solids 280, 188–192 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, M. Hirano, Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2. Phys. Rev. Lett. 87, 175501 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    K. Kajihara, L. Skuja, M. Hirano, H. Hosono, Oxygen-excess amorphous SiO2 with 18O-labeled interstitial oxygen molecules. J. Non-Cryst. Solids 345–346, 219–223 (2004)CrossRefGoogle Scholar
  47. 47.
    E.J. Friebele, D.L. Griscom, M. Stapelbroek, Fundamental defect centres in glass: the peroxy radical in irradiated, high purity silica. Phys. Rev. Lett. 42, 1346–1349 (1979)ADSCrossRefGoogle Scholar
  48. 48.
    M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica. Phys. Rev. B 60(14), 9959–9964 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, H. Hosono, Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping. J. Non-Cryst. Solids 345–346, 328–331 (2004)CrossRefGoogle Scholar
  50. 50.
    H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ogawa, Effects of fluorine dimer excimer laser radiation on the optical transmission and defect formation of various types of synthetic SiO2 glasses. Appl. Phys. Lett. 74, 2755–2757 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    K. Kajihara, M. Hirano, L. Skuja, H. Hosono, Intrinsic defect formation in amorphous SiO2 by electronic excitation: bond dissociation versus Frenkel mechanisms. Phys. Rev. B 78, 094201 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    J. Morikawa, A. Orie, T. Hashimoto, S. Juodkazis, Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire. Opt. Express 18(8), 8300–8310 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, S. Juodkazis, Three-dimensional modeling of the heat-affected zone in laser machining applications. Laser Chem. 2008, 976205/1–6 (2008)CrossRefGoogle Scholar
  55. 55.
    L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, S. Juodkazis, Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect. Opt. Mater. Express 1, 1150–1158 (2011)CrossRefGoogle Scholar
  56. 56.
    K.E. Peiponen, A. Vaittinen, Light-induced refractive index change in some F coloured alkali halide crystals. J. Phys. C Solid State Phys. 15(13), L415 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    K. Rademaker, Rare Earth-Doped Alkali-Lead-Halide Laser Crystals of Low-phonon Energy (Cuvillier Verlag, Goettingen, 2005)Google Scholar
  58. 58.
    M. Velázquez, A. Ferrier, J.-L. Doualan, R. Moncorgé, Rare-Earth-Doped Low Phonon Energy Halide Crystals for Mid-Infrared Laser Sources, in Solid State Lasers, ed. by A. Al-Khursan (Intechopen, 2012)Google Scholar
  59. 59.
    S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, H. Misawa, Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation. Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008)CrossRefGoogle Scholar
  60. 60.
    R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron. 38, 119–156 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    C.J. de Jong, A. Lajevardipour, M. Gecevičius, M. Beresna, G. Gervinskas, P.G. Kazansky, Y. Bellouard, A.H.A. Clayton, S. Juodkazis, Deep-UV uorescence lifetime imaging microscopy. Photonics Res. 3(5), 283–288 (2015)CrossRefGoogle Scholar
  62. 62.
    S. Richter, D. Möncke, F. Zimmermann, E.I. Kamitsos, L. Wondraczek, A. Tünnermann, S. Nolte, Ultrashort pulse induced modifications in ULE—from nanograting formation to laser darkening. Opt. Mat. Express 5(8), 1834–1850 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • X. W. Wang
    • 1
  • R. Buividas
    • 1
  • F. Funabiki
    • 2
  • P. R. Stoddart
    • 3
  • H. Hosono
    • 2
  • S. Juodkazis
    • 1
    • 4
  1. 1.Centre for Micro-PhotonicsSwinburne University of TechnologyHawthornAustralia
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan
  3. 3.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  4. 4.Center for NanotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations