Advertisement

Applied Physics A

, 122:126 | Cite as

Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

  • P. de RangoEmail author
  • P. Marty
  • D. Fruchart
Invited Paper
Part of the following topical collections:
  1. Hydrogen-based energy storage

Abstract

The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for “self-adaptive” systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

Keywords

Solid Oxide Fuel Cell Phase Change Material Metal Hydride Proton Exchange Membrane Fuel Cell MgH2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

x

Hydrogenation fraction (0 < x < 1)

\(\frac{{{\text{d}}x}}{{{\text{d}}t}}\)

Hydrogenation velocity (s−1)

Cp

Specific heat (J/kg/K)

ε

Porosity

Ea

Activation energy (J/mol)

ΔH

Absorption enthalpy (J/mol)

K

Permeability (m2)

λ

Effective thermal conductivity (W/m K)

Lth

Characteristic length for heat diffusion (m)

Lgaz

Characteristic length for gas diffusion (m)

µ

Dynamic viscosity of hydrogen (Pa s)

M

Molecular weight of hydrogen (kg/mol)

P

Hydrogen pressure (Pa)

Pin

Gas inlet pressure (Pa)

ρ

Density (kg/m3)

R

Universal gas constant = 8.314 J/mol K

S

Source term (W/m3)

T

Temperature (K)

Tm

Melting temperature of the PCM (K)

V

Gas velocity (m/s)

wt

Maximum hydrogen fraction inside the hydride (%)

Subscripts

m

Metal hydride (except for T m)

g

Gas

eq

Equilibrium

Notes

Acknowledgments

The authors gratefully acknowledge partial funding by the Carnot Institute “Energies du Futur” and the European Commission DG Research (SES6-2006-518271/NESSHY).

References

  1. 1.
    J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, et al., Review of magnesium hydride based materials: development and optimisation. Appl. Phys. A 122(2), 122:97 (2016). doi: 10.1007/s00339-016-9602-0
  2. 2.
    J.C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, et al., Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 122, 85 (2016). doi: 10.1007/s00339-016-9601-1
  3. 3.
    J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293–295, 495–500 (1999). doi: 10.1016/S0925-8388(99)00474-0 CrossRefGoogle Scholar
  4. 4.
    M. Jehan, D. Fruchart, McPhy-energy’s proposal for solid state hydrogen storage materials and systems. J. Alloys Compd. 580(Supplement 1), S343–S348 (2013). doi: 10.1016/j.jallcom.2013.03.266 CrossRefGoogle Scholar
  5. 5.
    P. de Rango, A. Chaise, J. Charbonnier, D. Fruchart, M. Jehan, P. Marty et al., Nanostructured magnesium hydride for pilot tank development. J. Alloys Compd. 446–447, 52–57 (2007). doi: 10.1016/j.jallcom.2007.01.108 CrossRefGoogle Scholar
  6. 6.
    M. Verga, F. Armanasco, C. Guardamagna, C. Valli, A. Bianchin, F. Agresti et al., Scaling up effects of Mg hydride in a temperature and pressure-controlled hydrogen storage device. Int. J. Hydrogen Energy 34, 4602–4610 (2009). doi: 10.1016/j.ijhydene.2008.08.043 CrossRefGoogle Scholar
  7. 7.
    A. Chaise, P. de Rango, P. Marty, D. Fruchart, Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrogen Energy 35, 6311–6322 (2010). doi: 10.1016/j.ijhydene.2010.03.057 CrossRefGoogle Scholar
  8. 8.
    S. Garrier, A. Chaise, P. de Rango, P. Marty, B. Delhomme, D. Fruchart et al., MgH2 intermediate scale tank tests under various experimental conditions. Int. J. Hydrogen Energy 36, 9719–9726 (2011). doi: 10.1016/j.ijhydene.2011.05.017 CrossRefGoogle Scholar
  9. 9.
    B. Bogdanović, A. Ritter, B. Spliethoff, K. Straβburger, A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system. Int. J. Hydrogen Energy 20, 811–822 (1995). doi: 10.1016/0360-3199(95)00012-3 CrossRefGoogle Scholar
  10. 10.
    B. Delhomme, P. de Rango, P. Marty, M. Bacia, B. Zawilski, C. Raufast et al., Large scale magnesium hydride tank coupled with an external heat source. Int. J. Hydrogen Energy 37, 9103–9111 (2012). doi: 10.1016/j.ijhydene.2012.03.018 CrossRefGoogle Scholar
  11. 11.
    A. Chaise, P. de Rango, P. Marty, D. Fruchart, S. Miraglia, R. Olivès et al., Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int. J. Hydrogen Energy 34, 8589–8596 (2009). doi: 10.1016/j.ijhydene.2009.07.112 CrossRefGoogle Scholar
  12. 12.
    S. Nachev, P. de Rango, D. Fruchart, N. Skryabina, P. Marty, Correlation between microstructural and mechanical behavior of nanostructured MgH2 upon hydrogen cycling, J. Alloys Compd. (n.d.). doi: 10.1016/j.jallcom.2014.12.088
  13. 13.
    G.A. Lozano, J.M. Bellosta von Colbe, T. Klassen, M. Dornheim, Transport phenomena versus intrinsic kinetics: hydrogen sorption limiting sub-process in metal hydride beds. Int. J. Hydrogen Energy 39, 18952–18957 (2014). doi: 10.1016/j.ijhydene.2014.09.035 CrossRefGoogle Scholar
  14. 14.
    S. Nachev, P. de Rango, B. Delhomme, D. Plante, B. Zawilski, F. Longa et al., In situ dilatometry measurements of MgH2 compacted disks. J. Alloys Compd. 580(Supplement 1), S183–S186 (2013). doi: 10.1016/j.jallcom.2013.03.098 CrossRefGoogle Scholar
  15. 15.
    S. Garrier, B. Delhomme, P. de Rango, P. Marty, D. Fruchart, S. Miraglia, A new MgH2 tank concept using a phase-change material to store the heat of reaction. Int. J. Hydrogen Energy 38, 9766–9771 (2013). doi: 10.1016/j.ijhydene.2013.05.026 CrossRefGoogle Scholar
  16. 16.
    P.R. Wilson, R.C. Bowman Jr, J.L. Mora, J.W. Reiter, Operation of a PEM fuel cell with LaNi4.8Sn0.2 hydride beds. J. Alloys Compd. 446–447, 676–680 (2007). doi: 10.1016/j.jallcom.2007.02.162 CrossRefGoogle Scholar
  17. 17.
    T. Førde, J. Eriksen, A.G. Pettersen, P.J.S. Vie, Ø. Ulleberg, Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. Int. J. Hydrogen Energy 34, 6730–6739 (2009). doi: 10.1016/j.ijhydene.2009.05.146 CrossRefGoogle Scholar
  18. 18.
    R. Urbanczyk, S. Peil, D. Bathen, C. Heßke, J. Burfeind, K. Hauschild et al., HT-PEM fuel cell system with integrated complex metal hydride storage tank. Fuel Cells 11, 911–920 (2011). doi: 10.1002/fuce.201100012 CrossRefGoogle Scholar
  19. 19.
    P. Rizzi, E. Pinatel, C. Luetto, P. Florian, A. Graizzaro, S. Gagliano et al., Integration of a PEM fuel cell with a metal hydride tank for stationary applications. J. Alloys Compd. 645(Supplement 1), S338–S342 (2015). doi: 10.1016/j.jallcom.2014.12.145 CrossRefGoogle Scholar
  20. 20.
    B. Delhomme, A. Lanzini, G.A. Ortigoza-Villalba, S. Nachev, P. de Rango, M. Santarelli et al., Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank. Int. J. Hydrogen Energy 38, 4740–4747 (2013). doi: 10.1016/j.ijhydene.2013.01.140 CrossRefGoogle Scholar
  21. 21.
    P. De Rango, P. Marty, B. Delhomme, R. Moracchioli, S. Nachev, System for the reversible storage of hydrogen in a material in the form of a metal hydride comprising a plurality of heat pipes in thermal contact with the material, WO2013190024 (A2), 2013. http://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20131227&DB=EPODOC&locale=fr_EP&CC=WO&NR=2013190024A2&KC=A2&ND=4. Accessed 17 Sept 2015
  22. 22.
    G.A. Lozano, C.N. Ranong, J.M. Bellosta von Colbe, R. Bormann, J. Hapke, G. Fieg et al., Optimization of hydrogen storage tubular tanks based on light weight hydrides. Int. J. Hydrogen Energy 37, 2825–2834 (2012). doi: 10.1016/j.ijhydene.2011.03.043 CrossRefGoogle Scholar
  23. 23.
    A. Freni, F. Cipitì, G. Cacciola, Finite element-based simulation of a metal hydride-based hydrogen storage tank. Int. J. Hydrogen Energy 34, 8574–8582 (2009). doi: 10.1016/j.ijhydene.2009.07.118 CrossRefGoogle Scholar
  24. 24.
    C.A. Krokos, D. Nikolic, E.S. Kikkinides, M.C. Georgiadis, A.K. Stubos, Modeling and optimization of multi-tubular metal hydride beds for efficient hydrogen storage. Int. J. Hydrogen Energy 34, 9128–9140 (2009). doi: 10.1016/j.ijhydene.2009.09.021 CrossRefGoogle Scholar
  25. 25.
    J. Ma, Y. Wang, S. Shi, F. Yang, Z. Bao, Z. Zhang, Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank. Int. J. Hydrogen Energy 39, 13583–13595 (2014). doi: 10.1016/j.ijhydene.2014.03.016 CrossRefGoogle Scholar
  26. 26.
    Z. Wu, F. Yang, Z. Zhang, Z. Bao, Magnesium based metal hydride reactor incorporating helical coil heat exchanger: simulation study and optimal design. Appl. Energy 130, 712–722 (2014). doi: 10.1016/j.apenergy.2013.12.071 CrossRefGoogle Scholar
  27. 27.
    Z. Bao, Performance investigation and optimization of metal hydride reactors for high temperature thermochemical heat storage. Int. J. Hydrogen Energy 40, 5664–5676 (2015). doi: 10.1016/j.ijhydene.2015.02.123 CrossRefGoogle Scholar
  28. 28.
    Z. Bao, F. Yang, Z. Wu, X. Cao, Z. Zhang, Simulation studies on heat and mass transfer in high-temperature magnesium hydride reactors. Appl. Energy 112, 1181–1189 (2013). doi: 10.1016/j.apenergy.2013.04.053 CrossRefGoogle Scholar
  29. 29.
    D. Shen, C.Y. Zhao, Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals. Chem. Eng. Sci. 98, 273–281 (2013). doi: 10.1016/j.ces.2013.05.041 CrossRefGoogle Scholar
  30. 30.
    A. Jemni, S.B. Nasrallah, Study of a two dimensional heat and mass transfer during absorption in a metal hydrogen reactor. Int. J. Hydrogen Energy 20(1995), 43–52 (1995). doi: 10.1016/0360-3199(93)E0007-8 CrossRefGoogle Scholar
  31. 31.
    A. Chaise, P. Marty, P. de Rango, D. Fruchart, A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor. Int. J. Heat Mass Transf. 52, 4564–4572 (2009). doi: 10.1016/j.ijheatmasstransfer.2009.03.052 CrossRefzbMATHGoogle Scholar
  32. 32.
    P. Marty, P. de Rango, B. Delhomme, S. Garrier, Various tools for optimizing large scale magnesium hydride storage. J. Alloys Compd. 580(Supplement 1), S324–S328 (2013). doi: 10.1016/j.jallcom.2013.02.169 CrossRefGoogle Scholar
  33. 33.
    S. Mellouli, N. Ben Khedher, F. Askri, A. Jemni, S. Ben Nasrallah, Numerical analysis of metal hydride tank with phase change material, Appl. Therm. Eng. (n.d.). doi: 10.1016/j.applthermaleng.2015.07.022

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CNRSNEEL InstituteGrenobleFrance
  2. 2.Université Grenoble AlpesGrenobleFrance
  3. 3.Laboratoire des Ecoulements Géophysiques et Industriels (LEGI)GrenobleFrance

Personalised recommendations