Applied Physics A

, 122:90 | Cite as

Comparison between fused silica of type II and III after surface heating with a CO2 laser

  • Thomas Doualle
  • David Hébert
  • Patrick Combis
  • Christophe Hecquet
  • Laurent GallaisEmail author
  • Jean-Luc Rullier


We compare the effect of CO2 laser heating on silica samples of type II and III; these two materials having significant differences in composition and physical properties. For both types of silica, the crater shape and depths are similar through all the parameter ranges that were studied. This is particularly true when evaporation is the major mechanism of the crater formation process. Our numerical simulations of thermal heating are consistent with these results, and calculations with a physically based model of evaporation evaluate correctly the crater depths. Therefore, it can be conclude that the heating of silica surface by CO2 laser at temperatures sufficient to remove some material is independent of their metallic impurities and hydroxyl content, or the different values for the annealing and softening temperatures.


Fuse Silica Beam Diameter Metallic Impurity Silica Sample Crater Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The ZYGO New View 7300 was acquired within the framework of the Espace Photonique facility and funded by the financial support of the French Department of Industry, the local administrations (Provence-Alpes Côte d’Azur Regional council) and the European Community.


  1. 1.
    S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, P. Legros, Optimization of a laser mitigation process in damaged fused silica. Appl. Surf. Sci. 255, 5532–5536 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P. Cormont, L. Gallais, L. Lamaignère, J.-L. Rullier, P. Combis, D. Hebert, Impact of two CO2 laser heatings for damage repairing on fused silica surface. Opt. Express 18, 26068–26076 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, R. Poprawe, Optics manufacturing by laser radiation. Opt. Lasers Eng. 59, 34–40 (2014)CrossRefGoogle Scholar
  4. 4.
    C.K. Chung, Y.C. Sung, G.R. Huang, E.J. Hsiao, W.H. Lin, S.L. Lin, Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing. Appl. Phys. A 94, 927–932 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    S. Garner, S. Glaesemann, X. Li, Ultra-slim flexible glass for roll-to-roll electronic device fabrication. Appl. Phys. A 116, 403–407 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, S. Nolte, Toward laser welding of glasses without optical contacting. Appl. Phys. A 121, 1–9 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, Internal modification of glass by ultrashort laser pulse and its application to microwelding. Appl. Phys. A 114, 187–208 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Elhadj, M.J. Matthews, G.M. Guss, I.L. Bass, Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: a path to rimless laser machining. Appl. Phys. B 113, 307–315 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, J.-L. Rullier, Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation. J. Appl. Phys. 111, 063106 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, J.-L. Rullier, Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations. Appl. Phys. Lett. 101, 211908 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R.M. Vignes, T.F. Soules, J.S. Stolken, R.R. Settgast, S. Elhadj, M.J. Matthews, Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures. J. Am. Ceram. Soc. 96, 137–145 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Fang, Y. Zhao, W. Sun, Z. Li, G. Hu, X. Liu, D. Li, J. Shao, CO2 laser mitigation of the ultraviolet laser damage site on a fused silica surface. Opt. Eng. 53, 084107 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    R.N. Raman, M.J. Matthews, J.J. Adams, S.G. Demos, Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy. Opt. Express 18, 15207–15215 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    V. Uhl, K.O. Greulich, S. Thomas, Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica. Appl. Phys. A 65, 457–462 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    V. Zandian, J.S. Florry, D. Taylor, Viscosity of fused-silica with different hydroxyl contents. Br. Ceram. Trans. J. 90, 59–60 (1991)Google Scholar
  16. 16.
    N. Shen, M.J. Matthews, J.E. Fair, J.A. Britten, H.T. Nguyen, D. Cooke, S. Elhadj, S.T. Yang, Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica. Appl. Surf. Sci. 256, 4031–4037 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Heraeus, Quartz Glass for Optics Data and Properties HQS-MO_01.0/E/04.2013 (2013).
  18. 18.
    Corning Incorporated, HPFS Fused Silica Standard Grade (2003).
  19. 19.
    W.D. Kingery, Thermal conductivity. 12. Temperature dependence of conductivity for single-phase ceramics. J. Am. Ceram. Soc. 38, 251–255 (1955)CrossRefGoogle Scholar
  20. 20.
    K.L. Wray, T.J. Connolly, Thermal conductivity of clear fused silica at high temperatures. J. Appl. Phys. 30, 1702–1705 (1959)ADSCrossRefGoogle Scholar
  21. 21.
    S. Elhadj, S.T. Yang, M.J. Matthews, D.J. Cooke, J.D. Bude, M. Johnson, M. Feit, V.G. Draggoo, S.E. Bisson, High temperature thermographic measurements of laser heated silica. Proc. SPIE 7504, 750419 (2009)CrossRefGoogle Scholar
  22. 22.
    T.R. Anthony, H.E. Cline, Surface rippling induced by surface-tension gradients during laser surface melting and alloying. J. Appl. Phys. 48, 3888 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    F. Keilmann, Y.H. Bai, Periodic surface structures frozen into CO2 laser-melted quartz. Appl. Phys. A 29, 9–18 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    W. Dai, X. Xiang, Y. Jiang, H.J. Wang, X.B. Li, X.D. Yuan, W.G. Zheng, H.B. Lv, X.T. Zu, Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica. Opt. Lasers Eng. 49, 273–280 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Feit, M.J. Matthews, T.F. Soules, J.S. Stolken, M.R. Vignes, S.T. Yang, J.D. Cooke, Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces. Proc. SPIE 7842, 78420O (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M. Feit, A.M. Rubenchik, Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica. Proc. SPIE 4932, 91–102 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    R. Brückner, Properties and structure of vitreous silica I. J. Non-Cryst. Solids 5, 123–175 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    H.L. Schick, A thermodynamic analysis of the high-temperature vaporization properties of silica. Chem. Rev. 60, 331–362 (1960)CrossRefGoogle Scholar
  29. 29.
    H.J. Melosh, A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhao, J. Sullivan, T.D. Bennett, Wet etching study of silica glass after CW CO2 laser treatment. Appl. Surf. Sci. 225, 250–255 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculté des Sciences de St Jérôme, Institut Fresnel, Ecole Centrale MarseilleAix-Marseille Université, CNRSMarseilleFrance
  2. 2.CEA CESTALe BarpFrance
  3. 3.CEA DAM Ile-de-FranceArpajonFrance

Personalised recommendations