Advertisement

Applied Physics A

, 122:97 | Cite as

Review of magnesium hydride-based materials: development and optimisation

  • J.-C. Crivello
  • B. Dam
  • R. V. Denys
  • M. Dornheim
  • D. M. Grant
  • J. Huot
  • T. R. Jensen
  • P. de Jongh
  • M. Latroche
  • C. Milanese
  • D. Milčius
  • G. S. Walker
  • C. J. Webb
  • C. Zlotea
  • V. A. Yartys
Invited Paper
Part of the following topical collections:
  1. Hydrogen-based energy storage

Abstract

Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slow rates for some processes such as hydrogen diffusion through the bulk create challenges for large-scale implementation. The present paper reviews fundamentals of the Mg–H system and looks at the recent advances in the optimisation of magnesium hydride as a hydrogen storage material through the use of catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during absorption and desorption.

Keywords

Hydride Nb2O5 Equal Channel Angular Pressing Hydrogen Diffusion Metal Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is a part of the activities within IEA Task 32 Hydrogen-based Energy Storage. We are grateful for the task coordinator Dr. Michael Hirscher and all the experts from the Task 32 for the fruitful collaboration.

References

  1. 1.
    M. Paskevicius, D.A. Sheppard, C.E. Buckley, Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J. Am. Chem. Soc. 132(14), 5077–5083 (2010)CrossRefGoogle Scholar
  2. 2.
    J.F. Stampfer, C.E. Holley, J.F. Suttle, The magnesium-hydrogen system1-3. J. Am. Chem. Soc. 82(14), 3504–3508 (1960)CrossRefGoogle Scholar
  3. 3.
    P. Chen, M. Zhu, Recent progress in hydrogen storage. Mater. Today 11(12), 36–43 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Zlotea, M. Sahlberg, S. Özbilen, P. Moretto, Y. Andersson, Hydrogen desorption studies of the Mg24Y5–H system: formation of Mg tubes, kinetics and cycling effects. Acta Mater. 56(11), 2421–2428 (2008)CrossRefGoogle Scholar
  5. 5.
    T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano 3(11), 3521–3528 (2009)CrossRefGoogle Scholar
  6. 6.
    A.F. Gross, C.C. Ahn, S.L. Van Atta, P. Liu, J.J. Vajo, Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology 20(20), 204005 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Zhang, A.F. Gross, S.L. Van Atta, M. Lopez, P. Liu, C.C. Ahn, J.J. Vajo, C.M. Jensen, The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology 20(20), 204027 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, T.R. Jensen, Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 58(1), 30–75 (2013)CrossRefGoogle Scholar
  9. 9.
    C.J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84, 96–106 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Varin, L. Zbroniec, M. Polanski, J. Bystrzycki, A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides. Energies 4(1), 1–25 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 56(10), 841–846 (2007)CrossRefGoogle Scholar
  12. 12.
    F. Cheng, Z. Tao, J. Liang, J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 48(59), 7334–7343 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Zlotea, M. Latroche, Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids. Colloids Surf. A 439, 117–130 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Vajeeston, P. Ravindran, B.C. Hauback, H. Fjellvåg, A. Kjekshus, S. Furuseth, M. Hanfland, Structural stability and pressure-induced phase transitions in MgH2. Phys. Rev. B 73(22), 224102 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J. Huot, I. Swainson, R. Schulz, Phase transformation in magnesium hydride induced by ball milling. Annales de Chimie 31(1), 135–144 (2006)CrossRefGoogle Scholar
  16. 16.
    W.H. Zachariasen, C.E. Holley, J.F. Stamper Jnr, Neutron diffraction study of magnesium deuteride. Acta Crystallogr. 16(5), 352–353 (1963)CrossRefGoogle Scholar
  17. 17.
    M. Bortz, B. Bertheville, G. Böttger, K. Yvon, Structure of the high pressure phase γ-MgH2 by neutron powder diffraction. J. Alloys Compd. 287(1–2), L4–L6 (1999)CrossRefGoogle Scholar
  18. 18.
    P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg, Pressure-Induced Structural Transitions in MgH2. Phys Rev Lett 89(17), 175506 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    P. Vajeeston, P. Ravindran, H. Fjellvag, Chemical Bonding in Hydrides, in Advances in Chemistry Research, ed. by J.C. Taylor (Nova Science Publishers, New York City, 2011), pp. 177–200Google Scholar
  20. 20.
    D. Moser, G. Baldissin, D.J. Bull, D.J. Riley, I. Morrison, D.K. Ross, W.A. Oates, D. Noréus, The pressure–temperature phase diagram of MgH2 and isotopic substitution. J. Phys.: Condens. Matter 23(30), 305403 (2011)Google Scholar
  21. 21.
    M. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong, Hydrogen Storage in Magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127, 16675–16680 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Cheung, W.Q. Deng, A.C. van Duin, W.A. Goddard 3rd, ReaxFF(MgH) reactive force field for magnesium hydride systems. J. Phys. Chem. A 109(5), 851–859 (2005)CrossRefGoogle Scholar
  23. 23.
    V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int. J. Energy Res. 31(6–7), 637–663 (2007)CrossRefGoogle Scholar
  24. 24.
    K.C. Kim, B. Dai, J. Karl Johnson, D.S. Sholl, Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 20(20), 204001 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Zhao-Karger, J. Hu, A. Roth, D. Wang, C. Kubel, W. Lohstroh, M. Fichtner, Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem. Commun. 46(44), 8353–8355 (2010)CrossRefGoogle Scholar
  26. 26.
    Z. Wu, M.D. Allendorf, J.C. Grossman, Quantum monte carlo simulation of nanoscale MgH2 cluster thermodynamics. J. Am. Chem. Soc. 131(39), 13918–13919 (2009)CrossRefGoogle Scholar
  27. 27.
    A.C. Buckley, D.J. Carter, D.A. Sheppard, C.E. Buckley, Density functional theory calculations of magnesium hydride: a comparison of bulk and nanoparticle thermodynamics. J. Phys. Chem. C 116(33), 17985–17990 (2012)CrossRefGoogle Scholar
  28. 28.
    J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J. Phys. Chem. B 108(37), 13977–13983 (2004)CrossRefGoogle Scholar
  29. 29.
    J.J. Vajo, G.L. Olson, Hydrogen storage in destabilized chemical systems. Scr. Mater. 56(10), 829–834 (2007)CrossRefGoogle Scholar
  30. 30.
    J.C. Crivello, T. Nobuki, S. Kato, M. Abe, T. Kuji, Hydrogen absorption properties of the -Mg17Al12 phase and its Al-richer domains. J. Alloys Compd. 446–447, 157–161 (2007)CrossRefGoogle Scholar
  31. 31.
    Q.A. Zhang, H.Y. Wu, Hydriding behavior of Mg17Al12 compound. Mater. Chem. Phys. 94(1), 69–72 (2005)CrossRefGoogle Scholar
  32. 32.
    S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling. J. Alloys Compd. 297, 282–293 (2000)CrossRefGoogle Scholar
  33. 33.
    A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, J.W. Andreasen, M.M. Nielsen, T.R. Jensen, Interaction of hydrogen with an Mg–Al alloy. J. Alloys Compd. 404–406, 323–326 (2005)CrossRefGoogle Scholar
  34. 34.
    K. Klyukin, M.G. Shelyapina, D. Fruchart, Hydrogen induced phase transition in magnesium: An Ab initio study. J. Alloys Compd. 580, S10–S12 (2013)CrossRefGoogle Scholar
  35. 35.
    X.H. Tan, L.Y. Wang, C.M.B. Holt, B. Zahiri, M.H. Eikerling, D. Mitlin, Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity. Phys. Chem. Chem. Phys. 14(31), 10904–10909 (2012)CrossRefGoogle Scholar
  36. 36.
    L.P.A. Mooij, A. Baldi, C. Boelsma, K. Shen, M. Wagemaker, Y. Pivak, H. Schreuders, R. Griessen, B. Dam, Interface energy controlled thermodynamics of nanoscale metal hydrides. Adv. Energy Mat. 1(5), 754–758 (2011)CrossRefGoogle Scholar
  37. 37.
    D. Korablov, F. Besenbacher, T.R. Jensen, Ternary compounds in the magnesium–titanium hydrogen storage system. Int. J. Hydrogen Energy 39(18), 9700–9708 (2014)CrossRefGoogle Scholar
  38. 38.
    P. Kalisvaart, B. Shalchi-Amirkhiz, R. Zahiri, B. Zahiri, X. Tan, M. Danaie, G. Botton, D. Mitlin, Thermodynamically destabilized hydride formation in “bulk” Mg-AlTi multilayers for hydrogen storage. Phys. Chem. Chem. Phys. 15(39), 16432–16436 (2013)CrossRefGoogle Scholar
  39. 39.
    C. Zhou, Z.Z. Fang, J. Lu, X. Luo, C. Ren, P. Fan, Y. Ren, X. Zhang, Thermodynamic destabilization of magnesium hydride using Mg-based solid solution alloys. J. Phys. Chem. C 118(22), 11526–11535 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Dornheim, T. Klassen, High Temperature Hydrides. Encyclopedia of Electrochemical Power Sources (Elsevier, Amsterdam, 2009), pp. 459–472CrossRefGoogle Scholar
  41. 41.
    A. Borgschulte, U. Bösenberg, G. Barkhordarian, M. Dornheim, R. Bormann, Enhanced hydrogen sorption kinetics of magnesium by destabilized MgH2−δ. Catal. Today 120, 262–269 (2007)CrossRefGoogle Scholar
  42. 42.
    G. Barkhordarian, T. Klassen, R. Bormann, Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents. J. Alloys Compd. 407, 249–255 (2006)CrossRefGoogle Scholar
  43. 43.
    H.M. Mintz, Y. Zeiri, Review: hydriding kinetics of powders. J. Alloys Compd. 216, 159–175 (1994)CrossRefGoogle Scholar
  44. 44.
    E. Evard, I. Gabis, V.A. Yartys, Kinetics of hydrogen evolution from MgH2: experimental studies, mechanism and modelling. Int. J. Hydrogen Energy 35(17), 9060–9069 (2010)CrossRefGoogle Scholar
  45. 45.
    J. Huot, G. Liang, R. Schulz, Mechanically alloyed metal hydride systems. Appl. Phys. 72(2), 187–195 (2001)CrossRefGoogle Scholar
  46. 46.
    P. Kuziora, M. Wyszyńska, M. Polanski, J. Bystrzycki, Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. Int. J. Hydrogen Energy 39(18), 9883–9887 (2014)CrossRefGoogle Scholar
  47. 47.
    R.V. Denys, A.B. Riabov, J.P. Maehlen, M.V. Lototsky, J.K. Solberg, V.A. Yartys, In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen. Acta Mater. 57(13), 3989–4000 (2009)CrossRefGoogle Scholar
  48. 48.
    V. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, The effect of ball milling and equal channel angular pressing on hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy. Acta Mater. 52(2), 405–414 (2004)CrossRefGoogle Scholar
  49. 49.
    V. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, S. Jorgensen, The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg–Ni alloy. J. Alloys Compd. 436, 99–106 (2007)CrossRefGoogle Scholar
  50. 50.
    V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int. J. Hydrogen Energy 34(15), 6320–6324 (2009)CrossRefGoogle Scholar
  51. 51.
    V.M. Skripnyuk, E. Rabkin, L.A. Bendersky, A. Magrez, E. Carreño-Morelli, Y. Estrin, Hydrogen storage properties of as-synthesized and severely deformed magnesium—multiwall carbon nanotubes composite. Int. J. Hydrogen Energy 35(11), 5471–5478 (2010)CrossRefGoogle Scholar
  52. 52.
    S. Løken, J.K. Solberg, J.P. Maehlen, R.V. Denys, M.V. Lototsky, B.P. Tarasov, V.A. Yartys, Nanostructured Mg–Mm–Ni hydrogen storage alloy: structure-properties relationship. J. Alloys Compd. 446–447, 114–120 (2007)CrossRefGoogle Scholar
  53. 53.
    Á. Révész, M. Gajdics, L.K. Varga, G. Krállics, L. Péter, T. Spassov, Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. Int. J. Hydrogen Energy 39(18), 9911–9917 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Krystian, M.J. Zehetbauer, H. Kropik, B. Mingler, G. Krexner, Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing. J. Alloys Compd. 509(Suppl 1), S449–S455 (2011)CrossRefGoogle Scholar
  55. 55.
    A.M. Jorge Jr, G.F. de Lima, M.R. Martins Triques, W.J. Botta, C.S. Kiminami, R.P. Nogueira, A.R. Yavari, T.G. Langdon, Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. Int. J. Hydrogen Energy 39(8), 3810–3821 (2014)CrossRefGoogle Scholar
  56. 56.
    Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2 Mm alloys. J. Alloys Compd. 466(1–2), 176–181 (2008)CrossRefGoogle Scholar
  57. 57.
    Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, W. Han, S.X. Zhou, Microstructure and novel hydrogen storage properties of melt-spun Mg–Ni–Mm alloys. J. Alloys Compd. 477(1–2), 262–266 (2009)CrossRefGoogle Scholar
  58. 58.
    Y. Wu, J.K. Solberg, V.A. Yartys, The effect of solidification rate on microstructural evolution of a melt-spun Mg–20Ni–8 Mm hydrogen storage alloy. J. Alloys Compd. 446–447, 178–182 (2007)CrossRefGoogle Scholar
  59. 59.
    R.V. Denys, A.A. Poletaev, J.K. Solberg, B.P. Tarasov, V.A. Yartys, LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: crystal structure and hydrogenation behavior. Acta Mater. 58(7), 2510–2519 (2010)CrossRefGoogle Scholar
  60. 60.
    A.A. Poletaev, R.V. Denys, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Microstructural optimization of LaMg12 alloy for hydrogen storage. J. Alloys Compd. 509, S633–S639 (2011)CrossRefGoogle Scholar
  61. 61.
    A.A. Poletaev, R.V. Denys, J.P. Maehlen, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Nanostructured rapidly solidified LaMg11Ni alloy: microstructure, crystal structure and hydrogenation properties. Int. J. Hydrogen Energy 37(4), 3548–3557 (2012)CrossRefGoogle Scholar
  62. 62.
    P.E. de Jongh, P. Adelhelm, Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem. 3(12), 1332–1348 (2010)CrossRefGoogle Scholar
  63. 63.
    T.K. Nielsen, F. Besenbacher, T.R. Jensen, Nanoconfined hydrides for energy storage. Nanoscale 3(5), 2086–2098 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    C. Zlotea, F. Cuevas, J. Andrieux, C. Matei Ghimbeu, E. Leroy, E. Léonel, S. Sengmany, C. Vix-Guterl, R. Gadiou, T. Martens, M. Latroche, Tunable synthesis of (Mg–Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy 2(1), 12–20 (2013)CrossRefGoogle Scholar
  65. 65.
    P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake, J.D. Meeldijk, J.W. Geus, K.P.D. Jong, The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem. Mater. 19(24), 6052–6057 (2007)CrossRefGoogle Scholar
  66. 66.
    P. Javadian, C. Zlotea, C.M. Ghimbeu, M. Latroche, T.R. Jensen, Hydrogen storage properties of nanoconfined LiBH4–Mg2NiH4 reactive hydride composites. J. Phys. Chem. C 119(11), 5819–5826 (2015)CrossRefGoogle Scholar
  67. 67.
    Y.S. Au, M.K. Obbink, S. Srinivasan, P.C.M.M. Magusin, K.P. de Jong, P.E. de Jongh, The size dependence of hydrogen mobility and sorption kinetics for carbon-supported MgH2 particles. Adv. Funct. Mater. 24(23), 3604–3611 (2014)CrossRefGoogle Scholar
  68. 68.
    C. Zlotea, Y. Oumellal, S.-J. Hwang, C.M. Ghimbeu, P.E. de Jongh, M. Latroche, Ultrasmall MgH2 Nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics. J. Phys. Chem. C 119(32), 18091–18098 (2015)CrossRefGoogle Scholar
  69. 69.
    R. Bogerd, P. Adelhelm, J.H. Meeldijk, K.P. de Jong, P.E. de Jongh, The structural characterization and H2 sorption properties of carbon-supported Mg1−xNix nanocrystallites. Nanotechnology 20(20), 204019 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    G. Siviero, V. Bello, G. Mattei, P. Mazzoldi, G. Battaglin, N. Bazzanella, R. Checchetto, A. Miotello, Structural evolution of Pd-capped Mg thin films under H2 absorption and desorption cycles. Int. J. Hydrogen Energy 34(11), 4817–4826 (2009)CrossRefGoogle Scholar
  71. 71.
    C.E. Buckley, H.K. Birnbaum, J.S. Lin, S. Spooner, D. Bellmann, P. Staron, T.J. Udovic, E. Hollar, Characterization of H defects in the aluminium-hydrogen system using small-angle scattering techniques. J. Appl. Crystallogr. 34(2), 119–129 (2001)CrossRefGoogle Scholar
  72. 72.
    D. Milcius, J. Grbović-Novaković, R. Zostautienė, M. Lelis, D. Girdzevicius, M. Urbonavicius, Combined XRD and XPS analysis of ex situ and in situ plasma hydrogenated magnetron sputtered Mg films. J. Alloys Compd. 647, 790–796 (2015)CrossRefGoogle Scholar
  73. 73.
    R. Gremaud, C.P. Broedersz, D.M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J.H. Rector, B. Dam, R. Griessen, Hydrogenography: an optical combinatorial method to find new light-weight hydrogen-storage materials. Adv. Mater. 19(19), 2813–2817 (2007)CrossRefGoogle Scholar
  74. 74.
    D.M. Borsa, R. Gremaud, A. Baldi, H. Schreuders, J.H. Rector, B. Kooi, P. Vermeulen, P.H.L. Notten, B. Dam, R. Griessen, Structural, optical, and electrical properties of MgyTi1−yHx thin films. Phys. Rev. B 75(20), 205408 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    A. Baldi, R. Gremaud, D. Borsa, C. Balde, A. Vandereerden, G. Kruijtzer, P. Dejongh, B. Dam, R. Griessen, Nanoscale composition modulations in MgyTi1−yHx thin film alloys for hydrogen storage. Int. J. Hydrogen Energy 34(3), 1450–1457 (2009)CrossRefGoogle Scholar
  76. 76.
    K. Asano, R.J. Westerwaal, A. Anastasopol, L.P.A. Mooij, C. Boelsma, P. Ngene, H. Schreuders, S.W.H. Eijt, B. Dam, Destabilization of Mg hydride by self-organized nanoclusters in the immiscible Mg–Ti system. J. Phys. Chem. C 119(22), 12157–12164 (2015)CrossRefGoogle Scholar
  77. 77.
    K. Asano, H. Kim, K. Sakaki, K. Page, S. Hayashi, Y. Nakamura, E. Akiba, Synthesis and structural study of Ti-rich Mg–Ti hydrides. J. Alloys Compd. 593, 132–136 (2014)CrossRefGoogle Scholar
  78. 78.
    L. Mooij, T. Perkisas, G. Pálsson, H. Schreuders, M. Wolff, B. Hjörvarsson, S. Bals, B. Dam, The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers. Int. J. Hydrogen Energy 39(30), 17092–17103 (2014)CrossRefGoogle Scholar
  79. 79.
    A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, R. Griessen, Destabilization of the Mg–H system through elastic constraints. Phys. Rev. Lett. 102(22), 226102 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    C.J. Chung, S.-C. Lee, J.R. Groves, E.N. Brower, R. Sinclair, Clemens BM (2012) Interfacial Alloy Hydride Destabilization in Mg/Pd Thin Films. Phys Rev Lett. 108(10), 106102 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    L. Mooij, B. Dam, Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys. Chem. Chem. Phys. 15(8), 2782 (2013)CrossRefGoogle Scholar
  82. 82.
    M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, V.A. Yartys, Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen. Carbon 57, 146–160 (2013)CrossRefGoogle Scholar
  83. 83.
    K. Alsabawi, T.A. Webb, E.M. Gray, C.J. Webb, Effect of C60 additive on magnesium hydride for hydrogen storage. Int. J. Hydrogen Energy 40(33), 10508–10515 (2015)CrossRefGoogle Scholar
  84. 84.
    D. Korablov, J. Ångström, M.B. Ley, M. Sahlberg, F. Besenbacher, T.R. Jensen, Activation effects during hydrogen release and uptake of MgH2. Int. J. Hydrogen Energy 39(18), 9888–9892 (2014)CrossRefGoogle Scholar
  85. 85.
    M.V. Lototsky, R.V. Denys, V.A. Yartys, Combustion-type hydrogenation of nanostructured Mg-based composites for hydrogen storage. Int. J. Energy Res. 33(13), 1114–1125 (2009)CrossRefGoogle Scholar
  86. 86.
    G. Barkhordarian, T. Klassen, R. Bormann, Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr. Mater. 49(3), 213–217 (2003)CrossRefGoogle Scholar
  87. 87.
    M.P. Pitt, M. Paskevicius, C.J. Webb, D.A. Sheppard, C.E. Buckley, E.M. Gray, The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2 + 0.01Nb2O5 benchmark. Int. J. Hydrogen Energy 37(5), 4227–4237 (2012)CrossRefGoogle Scholar
  88. 88.
    J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, E. Ronnebro, Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling. J. Am. Chem. Soc. 131(43), 15843–15852 (2009)CrossRefGoogle Scholar
  89. 89.
    X. Zhu, L. Pei, Z. Zhao, B. Liu, S. Han, R. Wang, The catalysis mechanism of La hydrides on hydrogen storage properties of MgH2 in MgH2 + x wt% LaH3 (x = 0, 10, 20 and 30) composites. J. Alloys Compd. 577, 64–69 (2013)CrossRefGoogle Scholar
  90. 90.
    A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288(1–2), 217–225 (1999)CrossRefGoogle Scholar
  91. 91.
    M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, R. Bormann, Tailoring hydrogen storage materials towards application. Adv. Eng. Mater. 8(5), 377–385 (2006)CrossRefGoogle Scholar
  92. 92.
    K.F. Aguey-Zinsou, T. Nicolaisen, J.R. Ares Fernandez, T. Klassen, R. Bormann, Effect of nanosized oxides on MgH2 (de)hydriding kinetics. J. Alloys Compd. 434–435, 738–742 (2007)CrossRefGoogle Scholar
  93. 93.
    W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 315(1–2), 237–242 (2001)CrossRefGoogle Scholar
  94. 94.
    G. Barkhordarian, T. Klassen, R. Bormann, Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364(1–2), 242–246 (2004)CrossRefGoogle Scholar
  95. 95.
    G. Barkhordarian, T. Klassen, R. Bormann, Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J. Phys. Chem. B 110(22), 11020–11024 (2006)CrossRefGoogle Scholar
  96. 96.
    F. Dolci, M.D. Chio, M. Baricco, E. Giamello, Niobium pentoxide as promoter in the mixed MgH2/Nb2O5 system for hydrogen storage: a multitechnique investigation of the H2 uptake. J. Mater. Sci. 42(17), 7180–7185 (2007)ADSCrossRefGoogle Scholar
  97. 97.
    O. Friedrichs, F. Aguey-Zinsou, J.R. Ares Fernandez, J.C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, A. Fernandez, MgH2 with Nb2O5 as additive for hydrogen storage: chemical, structural and kinetic behaviour with heating. Acta Mater. 54, 105–110 (2006)CrossRefGoogle Scholar
  98. 98.
    O. Friedrichs, D. Martinez-Martinez, G. Guilera, J.C. SanchezLopez, A. Fernandez, In situ energy-dispersive XAS and XRD study of the superior hydrogen storage system MgH2/Nb2O5. J. Phys. Chem. C 111(28), 10700–10706 (2007)CrossRefGoogle Scholar
  99. 99.
    O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, T. Klassen, R. Bormann, A. Fernández, Nb2O5 “Pathway effect” on hydrogen sorption in Mg. J. Phys Chem. B 110(15), 7845–7850 (2006)CrossRefGoogle Scholar
  100. 100.
    T.R. Jensen, T.K. Nielsen, Y. Filinchuk, J.-E. Jorgensen, Y. Cerenius, E.M. Gray, C.J. Webb, Versatile in situ powder X-ray diffraction cells for solid-gas investigations. J. Appl. Crystallogr. 43(6), 1456–1463 (2010)CrossRefGoogle Scholar
  101. 101.
    B.R.S. Hansen, K.T. Møller, M. Paskevicius, A.-C. Dippel, P. Walter, C.J. Webb, C. Pistidda, N. Bergemann, M. Dornheim, T. Klassen, J.-E. Jørgensen, T.R. Jensen, In situ X-ray diffraction environments for high-pressure reactions. J. Appl. Crystallogr. 48(4), 1234–1241 (2015)CrossRefGoogle Scholar
  102. 102.
    T.K. Nielsen, T.R. Jensen, MgH2–Nb2O5 investigated by in situ synchrotron X-ray diffraction. Int. J. Hydrogen Energy 37(18), 13409–13416 (2012)CrossRefGoogle Scholar
  103. 103.
    A. Aurora, M.R. Mancini, D.M. Gattia, A. Montone, L. Pilloni, E. Todini, M.V. Antisari, Microstructural and kinetic investigation of hydrogen sorption reaction of MgH2/Nb2O5 nanopowders. Mater. Manuf. Process. 24(10–11), 1058–1063 (2009)CrossRefGoogle Scholar
  104. 104.
    L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys. 5(1), 17–26 (1921)ADSCrossRefGoogle Scholar
  105. 105.
    P.-A. Huhn, M. Dornheim, T. Klassen, R. Bormann, Thermal stability of nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 404–406, 499–502 (2005)CrossRefGoogle Scholar
  106. 106.
    P.K. Pranzas, M. Dornheim, D. Bellmann, F. Aguey-Zinsou, T. Klassen, A. Schreyer, SANS/USANS investigations of nanocrystalline MgH2 for reversible storage of hydrogen. Physica B 385–386, 630–632 (2006)CrossRefGoogle Scholar
  107. 107.
    P.K. Pranzas, M. Dornheim, U. Bösenberg, J.R. Ares Fernandez, G. Goerigk, S. Roth, R. Gehrke, A. Schreyer, Small-angle scattering investigations of magnesium hydride used as a hydrogen storage material. J. Appl. Crystallogr. 40, 383–387 (2007)CrossRefGoogle Scholar
  108. 108.
    R.L. Corey, T.M. Ivancic, D.T. Shane, E.A. Carl, R.C. Bowman, J.M. Bellosta von Colbe, M. Dornheim, R. Bormann, J. Huot, R. Zidan, A.C. Stowe, M.S. Conradi, Hydrogen motion in magnesium hydride by NMR. J. Phys. Chem. C 112, 19784–19790 (2008)CrossRefGoogle Scholar
  109. 109.
    A. Borgschulte, J.H. Rector, B. Dam, R. Griessen, A. Züttel, The role of niobium oxide as a surface catalyst for hydrogen absorption. J. Catal. 235, 353–358 (2005)CrossRefGoogle Scholar
  110. 110.
    N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball-milling. J. Alloys Compd. 404, 716–719 (2005)CrossRefGoogle Scholar
  111. 111.
    P. Moretto, C. Zlotea, F. Dolci, A. Amieiro, J.L. Bobet, A. Borgschulte, D. Chandra, H. Enoki, P. De Rango, D. Fruchart, J. Jepsen, M. Latroche, I.L. Jansa, D. Moser, S. Sartori, S.M. Wang, J.A. Zan, A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material. Int. J. Hydrogen Energy 38(16), 6704–6717 (2013)CrossRefGoogle Scholar
  112. 112.
    J.-C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, T.R. Jensen, M. Latroche, C. Milanese, G.S. Walker, Mg-based Compounds for Hydrogen and Energy Storage. Appl. Phys. A This issueGoogle Scholar
  113. 113.
    P. de Rango, P. Marty, D. Fruchart, Integrated with FC H storage systems utilising magnesium hydride: experimental studies and modelling. Appl. Phys. A This issueGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Université Paris Est, ICMPE (UMR 7182), CNRS, UPECThiaisFrance
  2. 2.Delft University of Technology, Chemical EngineeringDelftThe Netherlands
  3. 3.Institute for Energy TechnologyKjellerNorway
  4. 4.Norwegian University of Science and TechnologyTrondheimNorway
  5. 5.Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbHGeesthachtGermany
  6. 6.Nottingham UniversityNottinghamUK
  7. 7.Hydrogen Research InstituteUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  8. 8.Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityAarhusDenmark
  9. 9.Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  10. 10.Pavia Hydrogen Lab, C.S.G.I. and Chemistry DepartmentPavia UniversityPaviaItaly
  11. 11.Lithuanian Energy InstituteKaunasLithuania
  12. 12.Queensland Micro- and Nanotechnology CentreGriffith UniversityBrisbaneAustralia

Personalised recommendations