Applied Physics A

, 122:85 | Cite as

Mg-based compounds for hydrogen and energy storage

  • J.-C. Crivello
  • R. V. Denys
  • M. Dornheim
  • M. Felderhoff
  • D. M. Grant
  • J. Huot
  • T. R. Jensen
  • P. de Jongh
  • M. Latroche
  • G. S. Walker
  • C. J. Webb
  • V. A. Yartys
Invited Paper
Part of the following topical collections:
  1. Hydrogen-based energy storage

Abstract

Magnesium-based alloys attract significant interest as cost-efficient hydrogen storage materials allowing the combination of high gravimetric storage capacity of hydrogen with fast rates of hydrogen uptake and release and pronounced destabilization of the metal–hydrogen bonding in comparison with binary Mg–H systems. In this review, various groups of magnesium compounds are considered, including (1) RE–Mg–Ni hydrides (RE = La, Pr, Nd); (2) Mg alloys with p-elements (X = Si, Ge, Sn, and Al); and (3) magnesium alloys with d-elements (Ti, Fe, Co, Ni, Cu, Zn, Pd). The hydrogenation–disproportionation–desorption–recombination process in the Mg-based alloys (LaMg12, LaMg11Ni) and unusually high-pressure hydrides synthesized at pressures exceeding 100 MPa (MgNi2H3) and stabilized by Ni–H bonding are also discussed. The paper reviews interrelations between the properties of the Mg-based hydrides and pT conditions of the metal–hydrogen interactions, chemical composition of the initial alloys, their crystal structures, and microstructural state.

Keywords

Hydride Dehydrogenation Hydrogen Storage Metal Hydride MgH2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is a part of the activities within IEA Task 32 Hydrogen-based Energy Storage. We are grateful for the operating agent Dr. Michael Hirscher and all the experts from the Task 32 for the fruitful collaboration.

References

  1. 1.
    M.B. Ley, L.H. Jepsen, Y.-S. Lee, Y.W. Cho, J.M. Bellosta von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Complex hydrides for hydrogen storage—new perspectives. Mater. Today 17(3), 122–128 (2014)CrossRefGoogle Scholar
  2. 2.
    U. Eberle, M. Felderhoff, F. Schüth, Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48(36), 6608–6630 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 56(10), 841–846 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288(1–2), 217–225 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Huot, G. Liang, R. Schulz, Mechanically alloyed metal hydride systems. Appl. Phys. A Mater. Sci. Process. 72(2), 187–195 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    K. Alsabawi, T.A. Webb, E.M. Gray, C.J. Webb, Effect of C60 Additive on Magnesium Hydride for Hydrogen Storage. Int. J. Hydrog. Energy 40(33), 10508–10515 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, R. Schulz, Study of the activation process of Mg-based hydrogen storage materials modified by graphite and other carbonaceous compounds. J. Mater. Res. 16(10), 2893–2905 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84, 96–106 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Paskevicius, D.A. Sheppard, K. Williamson, C.E. Buckley, Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy 88, 469–477 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Reiser, B. Bogdanovic, K. Schlichte, The application of Mg-based metal-hydrides as heat energy storage systems. Int. J. Hydrog. Energy 25(5), 425–430 (2000)CrossRefGoogle Scholar
  11. 11.
    D.A. Sheppard, M. Paskevicius, C.E. Buckley, Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium. Chem. Mater. 23(19), 4298–4300 (2011)CrossRefGoogle Scholar
  12. 12.
    G.S. Walker, Multicomponent hydrogen storage systems, in Solid-state Hydrogen Storage, ed. by G.S. Walker (Woodhead Publishing Ltd, Cambridge, 2008), pp. 478–499CrossRefGoogle Scholar
  13. 13.
    J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J. Phys. Chem. B 108(37), 13977–13983 (2004)CrossRefGoogle Scholar
  14. 14.
    R. Janot, F. Cuevas, M. Latroche, A. Percheron-Guégan, Influence of crystallinity on the structural and hydrogenation properties of Mg2X phases (X = Ni, Si, Ge, Sn). Intermetallics 14(2), 163–169 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, Z. Li, F. Cuevas, M. Latroche, Phase stabilities in the Mg–Si–H system tuned by mechanochemistry. J. Phys. Chem. C 118(38), 21889–21895 (2014)CrossRefGoogle Scholar
  16. 16.
    A.-L. Chaudhary, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Thermodynamic destabilisation of MgH2 and NaMgH3 using Group IV elements Si, Ge or Sn. J. Alloys Compd. 623, 109–116 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Paskevicius, D.A. Sheppard, A.L. Chaudhary, C.J. Webb, E.M.A. Gray, H.Y. Tian, V.K. Peterson, C.E. Buckley, Kinetic limitations in the Mg–Si–H system. Int. J. Hydrog. Energy 36(17), 10779–10786 (2011)CrossRefGoogle Scholar
  18. 18.
    A.-L. Chaudhary, D.A. Sheppard, M. Paskevicius, C.J. Webb, E.M. Gray, C.E. Buckley, Mg2Si nanoparticle synthesis for high pressure hydrogenation. J. Phys. Chem. C 118(2), 1240–1247 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Bystrzycki, T. Płociński, W. Zieliński, Z. Wiśniewski, M. Polanski, W. Mróz, Z. Bojar, K.J. Kurzdłowski, Nano-engineering of magnesium hydride for hydrogen storage. Microelectron. Eng. 86(4–6), 889–891 (2009)CrossRefGoogle Scholar
  20. 20.
    G.S. Walker, M. Abbas, D.M. Grant, C. Udeh, Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system. Chem. Commun. 47(28), 8001 (2011)CrossRefGoogle Scholar
  21. 21.
    F.C. Gennari, F.J. Castro, G. Urretavizcaya, G. Meyer, Catalytic effect of Ge on hydrogen desorption from MgH2. J. Alloys Compd. 334(1–2), 277–284 (2002)CrossRefGoogle Scholar
  22. 22.
    Abbas M. Thermodynamic Tuning of Light Metal Hydrides Multicomponent Systems by Ge [PhD Thesis]. University of Nottingham; 2014Google Scholar
  23. 23.
    M. Polanski, J. Bystrzycki, The influence of different additives on the solid-state reaction of magnesium hydride (MgH2) with Si. Int. J. Hydrog. Energy 34(18), 7692–7699 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, J.W. Andreasen, M.M. Nielsen, T.R. Jensen, Interaction of hydrogen with an Mg–Al alloy. J. Alloys Compd. 404–406, 323–326 (2005)CrossRefGoogle Scholar
  25. 25.
    J.F. Fernández, C.R. Sánchez, Rate determining step in the absorption and desorption of hydrogen by magnesium. J. Alloys Compd. 340(1–2), 189–198 (2002)CrossRefGoogle Scholar
  26. 26.
    J.F. Fernández, C.R. Sánchez, Simultaneous TDS–DSC measurements in magnesium hydride. J. Alloys Compd. 356–357, 348–352 (2003)CrossRefGoogle Scholar
  27. 27.
    G. Friedlmeier, M. Arakawa, T. Hirai, E. Akiba, Preparation and structural, thermal and hydriding characteristics of melt-spun Mg–Ni alloys. J. Alloys Compd. 292(1–2), 107–117 (1999)CrossRefGoogle Scholar
  28. 28.
    E. Callini, L. Pasquini, T.R. Jensen, E. Bonetti, Hydrogen storage properties of Mg–Ni nanoparticles. Int. J. Hydrog. Energy 38(27), 12207–12212 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. J. Alloys Compd. 289(1–2), 197–206 (1999)CrossRefGoogle Scholar
  30. 30.
    S. Orimo, Structural and hydriding properties of the Mg_Ni_H system with nano- and/or amorphous structures. Acta Mater. 45(6), 2271–2278 (1997)CrossRefGoogle Scholar
  31. 31.
    J. Matsuda, N. Uchiyama, T. Kanai, K. Harada, E. Akiba, Effect of Mg/Ni ratio on microstructure of Mg–Ni films deposited by magnetron sputtering. J. Alloys Compd. 617, 47–51 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Matsuda, K. Yoshida, Y. Sasaki, N. Uchiyama, E. Akiba, In situ observation on hydrogenation of Mg–Ni films using environmental transmission electron microscope with aberration correction. Appl. Phys. Lett. 105(8), 083903 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    R. Bogerd, P. Adelhelm, J.H. Meeldijk, K.P. de Jong, P.E. de Jongh, The structural characterization and H2 sorption properties of carbon-supported Mg1−xNix nanocrystallites. Nanotechnology 20(20), 204019 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Wu, M.V. Lototskyy, J.K. Solberg, V.A. Yartys, Effect of microstructure on the phase composition and hydrogen absorption–desorption behaviour of melt-spun Mg–20Ni–8Mm alloys. Int. J. Hydrog. Energy 37(2), 1495–1508 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Løken, J.K. Solberg, J.P. Maehlen, R.V. Denys, M.V. Lototsky, B.P. Tarasov, V.A. Yartys, Nanostructured Mg–Mm–Ni hydrogen storage alloy: structure–properties relationship. J. Alloys Compd. 446–447, 114–120 (2007)CrossRefGoogle Scholar
  36. 36.
    V.A. Yartys, V.E. Antonov, D. Chernyshov, J.C. Crivello, R.V. Denys, V.K. Fedotov, M. Gupta, V.I. Kulakov, M. Latroche, D. Sheptyakov, Structure and chemical bonding in MgNi2H3 from combined high resolution synchrotron and neutron diffraction studies and ab initio electronic structure calculations. Acta Mater. 98, 416–422 (2015)CrossRefGoogle Scholar
  37. 37.
    J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper. Inorg. Chem. 6(12), 2220–2223 (1967)CrossRefGoogle Scholar
  38. 38.
    A. Karty, Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: pressure sweep method. J. Appl. Phys. 50(11), 7200 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, T. Vegge, T.R. Jensen, Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and MgH2/MgCu2 studied with in situ X-ray powder diffraction. Appl. Phys. A 82(3), 515–521 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    K.T. Møller, B.R.S. Hansen, A.-C. Dippel, J.-E. Jørgensen, T.R. Jensen, Characterization of gas–solid reactions using in situ powder X-ray diffraction. Z. Anorg. Allg. Chem. 640(15), 3029–3043 (2014)CrossRefGoogle Scholar
  41. 41.
    B.R.S. Hansen, K.T. Møller, M. Paskevicius, A.-C. Dippel, P. Walter, C.J. Webb, C. Pistidda, N. Bergemann, M. Dornheim, T. Klassen, J.-E. Jørgensen, T.R. Jensen, In situ X-ray diffraction environments for high-pressure reactions. J. Appl. Crystallogr. 48(4), 1234–1241 (2015)CrossRefGoogle Scholar
  42. 42.
    Y.S. Au, M. Ponthieu, R. van Zwienen, C. Zlotea, F. Cuevas, K.P. de Jong, P.E. de Jongh, Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics. J. Mater. Chem. A 1(34), 9983 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Norek, T.K. Nielsen, M. Polanski, I. Kunce, T. Płociński, L.R. Jaroszewicz, Y. Cerenius, T.R. Jensen, J. Bystrzycki, Synthesis and decomposition mechanisms of ternary Mg2CoH5 studied using in situ synchrotron X-ray diffraction. Int. J. Hydrog. Energy 36(17), 10760–10770 (2011)CrossRefGoogle Scholar
  44. 44.
    L. Pasquini, E. Callini, M. Brighi, F. Boscherini, A. Montone, T.R. Jensen, C. Maurizio, M.V. Antisari, E. Bonetti, Magnesium nanoparticles with transition metal decoration for hydrogen storage. J. Nanopart. Res. 13(11), 5727–5737 (2011)CrossRefGoogle Scholar
  45. 45.
    H. Shao, M. Felderhoff, F. Schüth, Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int. J. Hydrog. Energy 36(17), 10828–10833 (2011)CrossRefGoogle Scholar
  46. 46.
    M. Ponthieu, F. Cuevas, J.F. Fernández, L. Laversenne, F. Porcher, M. Latroche, Structural properties and reversible deuterium loading of MgD2–TiD2 Nanocomposites. J. Phys. Chem. C 117(37), 18851–18862 (2013)CrossRefGoogle Scholar
  47. 47.
    E. Callini, L. Pasquini, L.H. Rude, T.K. Nielsen, T.R. Jensen, E. Bonetti, Hydrogen storage and phase transformations in Mg–Pd nanoparticles. J. Appl. Phys. 108(7), 073513 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    M. Ponthieu, Y.S. Au, K. Provost, C. Zlotea, E. Leroy, J.F. Fernández, M. Latroche, P.E. de Jongh, F. Cuevas, Nanoconfinement of Mg6Pd particles in porous carbon: size effects on structural and hydrogenation properties. J Mater. Chem. A 2(43), 18444–18453 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Polanski, T.K. Nielsen, Y. Cerenius, J. Bystrzycki, T.R. Jensen, Synthesis and decomposition mechanisms of Mg2FeH6 studied by in situ synchrotron X-ray diffraction and high-pressure DSC. Int. J. Hydrog. Energy 35(8), 3578–3582 (2010)CrossRefGoogle Scholar
  50. 50.
    M. Polanski, T. Płociński, I. Kunce, J. Bystrzycki, Dynamic synthesis of ternary Mg2FeH6. Int. J. Hydrog. Energy 35(3), 1257–1266 (2010)CrossRefGoogle Scholar
  51. 51.
    S.S. Raman, D.J. Davidson, J.L. Bobet, O.N. Srivastava, Investigations on the synthesis, structural and microstructural characterizations of Mg-based K2PtCl6 type (Mg2FeH6) hydrogen storage material prepared by mechanical alloying. J. Alloys Compd. 333(1–2), 282–290 (2002)CrossRefGoogle Scholar
  52. 52.
    C. Milanese, A. Girella, G. Bruni, V. Berbenni, P. Cofrancesco, A. Marini, M. Villa, P. Matteazzi, Hydrogen storage in magnesium–metal mixtures: reversibility, kinetic aspects and phase analysis. J. Alloys Compd. 465(1–2), 396–405 (2008)CrossRefGoogle Scholar
  53. 53.
    T. Liu, T. Zhang, X. Zhang, X. Li, Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles. Int. J. Hydrog. Energy 36(5), 3515–3520 (2011)MathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Deledda, B.C. Hauback, H. Fjellvåg, H-sorption behaviour of mechanically activated Mg–Zn powders. J. Alloys Compd. 446–447, 173–177 (2007)CrossRefGoogle Scholar
  55. 55.
    T.A. Webb, C.J. Webb, A.K. Dahle, E.M. Gray, In-situ neutron powder diffraction study of Mg–Zn alloys during hydrogen cycling. Int. J. Hydrog. Energy 40(25), 8106–8109 (2015)CrossRefGoogle Scholar
  56. 56.
    D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)ADSCrossRefGoogle Scholar
  57. 57.
    W. Steurer, S. Deloudi, Fascinating quasicrystals. Acta Crystallogr. A 64(Pt 1), 1–11 (2008)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Z. Luo, S. Zhang, Y. Tang, D. Zhao, Quasicrystals in as-cast Mg–Zn–RE alloys. Scr. Metall. Mater. 28(12), 1513–1518 (1993)CrossRefGoogle Scholar
  59. 59.
    A. van Blaaderen, Materials science: quasicrystals from nanocrystals. Nature 461(7266), 892–893 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    A.M. Viano, R.M. Stroud, P.C. Gibbons, A.F. McDowell, M.S. Conradi, K.F. Kelton, Hydrogenation of titanium-based quasicrystals. Phys. Rev. B: Condens. Matter 51(17), 12026–12029 (1995)ADSCrossRefGoogle Scholar
  61. 61.
    A.M. Viano, E.H. Majzoub, R.M. Stroud, M.J. Kramer, S.T. Misture, P.C. Gibbons, K.F. Kelton, Hydrogen absorption and storage in quasicrystalline and related Ti–Zr–Ni alloys. Philos. Mag. A 78(1), 131–142 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    M. Sahlberg, Y. Andersson, Hydrogen absorption in Mg–Y–Zn ternary compounds. J. Alloys Compd. 446–447, 134–137 (2007)CrossRefGoogle Scholar
  63. 63.
    X. Luo, D.M. Grant, G.S. Walker, Hydrogen storage properties for Mg–Zn–Y quasicrystal and ternary alloys. J. Alloys Compd. 645, S23–S26 (2015)CrossRefGoogle Scholar
  64. 64.
    R.V. Denys, V.A. Yartys, Effect of magnesium on the crystal structure and thermodynamics of the La3−xMgxNi9 hydrides. J. Alloys Compd. 509, S540–S548 (2011)CrossRefGoogle Scholar
  65. 65.
    R.V. Denys, V.A. Yartys, C.J. Webb, Hydrogen in La2MgNi9D13: the role of magnesium. Inorg. Chem. 51(7), 4231–4238 (2012)CrossRefGoogle Scholar
  66. 66.
    V. Yartys, R. Denys, Structure–properties relationship in RE3 − xMgxNi9H10–13 (RE = La, Pr, Nd) hydrides for energy storage. J. Alloys Compd. 645, S412–S418 (2015)CrossRefGoogle Scholar
  67. 67.
    R. Denys, V. Yartys, E. Gray, C. Webb, LaNi5-assisted hydrogenation of MgNi2 in the hybrid structures of La1.09Mg1.91Ni9D9.5 and La0.91Mg2.09Ni9D9.4. Energies 8(4), 3198–3211 (2015)CrossRefGoogle Scholar
  68. 68.
    Q. Lai, M. Paskevicius, D.A. Sheppard, C.E. Buckley, A.W. Thornton, M.R. Hill, Q. Gu, J. Mao, Z. Huang, H.K. Liu, Z. Guo, A. Banerjee, S. Chakraborty, R. Ahuja, K.-F. Aguey-Zinsou, Hydrogen storage materials for mobile and stationary applications: current state of the art. ChemSusChem. 8(17), 2789–2825 (2015)CrossRefGoogle Scholar
  69. 69.
    D.A. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicius, C.E. Buckley, Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv. 4(51), 26552–26562 (2014)CrossRefGoogle Scholar
  70. 70.
    J.C. Crivello, J. Zhang, M. Latroche, Structural stability of ABy Phases in the (La, Mg)–Ni system obtained by density functional theory calculations. J. Phys. Chem. C 115(51), 25470–25478 (2011)CrossRefGoogle Scholar
  71. 71.
    J.-C. Crivello, M. Gupta, M. Latroche, First principles calculations of (La, Mg)2Ni7 hydrides. J. Alloys Compd. 645, S5–S8 (2015)CrossRefGoogle Scholar
  72. 72.
    V.A. Yartys, V.E. Antonov, A.I. Beskrovnyy, J.C. Crivello, R.V. Denys, V.K. Fedotov, M. Gupta, V.I. Kulakov, M.A. Kuzovnikov, M. Latroche, Y.G. Morozov, S.G. Sheverev, B.P. Tarasov, Hydrogen-assisted phase transition in a trihydride MgNi2H3 synthesized at high H2 pressures: thermodynamics, crystallographic and electronic structures. Acta Mater. 82, 316–327 (2015)CrossRefGoogle Scholar
  73. 73.
    D.A. Sheppard, M. Paskevicius, T.D. Humphries, M. Felderhoff, G. Capurso, J. Bellosta von Colbe, M. Dornheim, T. Klassen, P.A. Ward,  J.A. Teprovich Jr., C. Corgnale, R. Zidan, D.M. Grant, C.E. Buckley, Metal hydrides for concentrating solar-thermal power energy storage. J. Appl. Phys. A (in preparation)Google Scholar
  74. 74.
    J.-C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, VA. Yartys, Review of magnesium hydride based materials: development and optimisation. Appl. Phys. A. doi: 10.1007/s00339-016-9602-0
  75. 75.
    P. de Rango, P. Marty, D. Fruchart, Integrated with FC H storage systems utilising magnesium hydride: experimental studies and modelling. Appl. Phys. A (in preparation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Université Paris Est, ICMPE (UMR 7182), CNRS, UPECThiaisFrance
  2. 2.Institute for Energy Technology and Norwegian University of Science and TechnologyKjeller and TrondheimNorway
  3. 3.Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbHGeesthachtGermany
  4. 4.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  5. 5.Nottingham UniversityNottinghamUK
  6. 6.Hydrogen Research InstituteUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  7. 7.Department of Chemistry, Interdisciplinary Nanoscience CenterAarhus UniversityAarhus CDenmark
  8. 8.Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtNetherlands
  9. 9.Queensland Micro- and Nanotechnology CentreGriffith UniversityBrisbaneAustralia

Personalised recommendations