An experimental study of double-peeling mechanism inspired by biological adhesive systems


Double- (or multiple-) peeling systems consist of two (or numerous) tapes adhering to a substrate and having a common hinge, where the pulling force is applied. Biological systems, consisting of tape-like (or spatula-like) contact elements, are widely observed in adhesive pads of flies, beetles, spiders, and geckos. It was previously hypothesized and analytically modeled that the simultaneous use of two or more such tape-like contacts in the opposite movement of contralateral legs during ceiling locomotion leads to enhanced, robust, and stable overall attachment, if compared to independently working contact points. In this paper, this biological solution for smart adhesion is demonstrated in an experiment using elastic adhesive tapes. The obtained results not only aided in explaining the functional mechanism of biological adhesive systems, but also in providing an experimental proof for biological observations and previous theoretical models.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    S. Gorb, Attachment devices of insect cuticle (Kluwer Academic Publishers, London, 2001)

  2. 2.

    S.N. Gorb, R.G. Beutel, Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88, 530–534 (2001)

  3. 3.

    S.N. Gorb, Uncovering insect stickiness: structure and properties of hairy attachment devices. Am. Entomol. 51, 31–35 (2005)

  4. 4.

    J. O. Wolff, S. N. Gorb, Attachment structures and adhesive secretions in arachnids, Springer (2016)

  5. 5.

    A. Haase, Untersuchungen uber den Bau und die Entwicklung der Haftlappen bei den Geckotiden. Arch. Naturgesch. 66, 321–346 (1900)

  6. 6.

    R. Ruibal, V. Ernst, The structure of the digital setae of lizards. J. Morphol. 117, 271–293 (1965)

  7. 7.

    U. Hiller, Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morphol. Tiere 62, 307–362 (1968)

  8. 8.

    D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, O. Ellers, A comparative analysis of clinging ability among padbearing lizards. Biol. J. Linn. Soc. 59, 21–35 (1996)

  9. 9.

    K. Autumn, P.H. Niewiarowski, J.B. Puthoff, Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014)

  10. 10.

    M. Varenberg, N.M. Pugno, S.N. Gorb, Spatulate structures in biological fibrillar adhesion. Soft Matter 6, 3269–3272 (2010)

  11. 11.

    K. Kendall, Thin-film peeling - the elastic term. J. Phys. D: Appl. Phys 8, 1449–1452 (1975)

  12. 12.

    E. Arzt, S. Gorb, R. Spolenak, From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100, 10603–10606 (2003)

  13. 13.

    N. Pugno, S. Gorb, Functional mechanism of biological adhesive systems described by multiple peeling approach, In: Proceedings of the 12th international conference on fracture, July 1217, Ottawa, Canada, USA (2009)

  14. 14.

    N. Pugno, The theory of multiple peeling. Int. J. Fract. 171, 185–193 (2011)

  15. 15.

    A.N. Gent, S. Kaang, Pulloff forces for adhesive tapes. J. Appl. Polym. Sci. 32, 4689–4700 (1986)

  16. 16.

    J.G. Williams, Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int. J. Fract. 87, 265–288 (1997)

  17. 17.

    K.T. Wan, Fracture mechanics of a V-peel adhesion test transition from a bending plate to a stretching membrane. J. Adhes. 70, 197–207 (1999)

  18. 18.

    A. Molinari, G. Ravichandran, Peeling of elastic tapes: effects of large deformations, pre-straining, and of a peel-zone model. J. Adhes. 84, 961–995 (2008)

  19. 19.

    M.R. Begley, R.R. Collino, J.N. Israelachvili, R.M. McMeeking, Peeling of a tape with large deformations and frictional sliding. J. Mech. Phys. Solids 61, 1265–1279 (2013)

  20. 20.

    Z. Sun, K.T. Wan, D.A. Dillard, A theoretical and numerical study of thin film delamination using the pull-off test. Int. J. Solids Struct. 41, 717–730 (2004)

  21. 21.

    B. Chen, P. Wu, H. Gao, Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J. R. Soc. Interface 6, 529–537 (2009)

  22. 22.

    D. Labonte, W. Federle, Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength. J. R. Soc. Interface 13, 20160373 (2016)

  23. 23.

    K. Kendall, Interfacial dislocations spontaneously created by peeling. J. Phys. D: Appl. Phys. 11, 1519–1527 (1978)

  24. 24.

    B. Chen, P.D. Wu, H. Gao, Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proc. R. Soc. A 464, 1639–1652 (2008)

  25. 25.

    F. Bosia, S. Colella, V. Mattoli, B. Mazzolai, N.M. Pugno, Hierarchical multiple peeling simulations. RSC Adv. 4, 25447–25452 (2014)

  26. 26.

    A. Pantano, N.M. Pugno, S.N. Gorb, Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability. Int. J. Fract. 171, 169–175 (2011)

  27. 27.

    S. Xia, L. Ponson, Toughening and asymmetry in peeling of heterogeneous adhesives. Phys. Rev. Lett. 108, 196101 (2012)

  28. 28.

    Z. Gu, S. Li, F. Zhang, S. Wang, Understanding surface adhesion in nature: a peeling model. Adv. Sci 3, 1500327 (2016)

  29. 29.

    L. Afferrante, G. Carbone, G. Demelio, N. Pugno, Adhesion of elastic thin films: double peeling of tapes versus axisymmetric peeling of membranes. Tribol. Lett. 52, 439–447 (2013)

  30. 30.

    C. Putignano, L. Afferrante, L. Mangialardi, G. Carbone, Equilibrium states and stability of pre-tensioned adhesive tapes. Beilstein J. Nanotechnol. 5, 1725–1731 (2014)

  31. 31.

    L. Heepe, S.N. Gorb, Biologically inspired mushroom-shaped adhesive microstructures. Annu. Rev. Mater. Res. 44, 173–203 (2014)

  32. 32.

    S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4, 271–275 (2007)

  33. 33.

    K. Dening, L. Heepe, L. Afferrante, G. Carbone, S.N. Gorb, Adhesion control by inflation: implications from biology to artificial attachment device. Appl. Phys. A 116, 567–573 (2014)

  34. 34.

    X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y.K. Mishra, R. Adelung, S.N. Gorb, A. Staubitz, Joining the unjoinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers. Adv. Mater. 24, 5676–5680 (2012)

  35. 35.

    L. Heepe, A.E. Kovalev, A.E. Filippov, S.N. Gorb, Adhesion failure at 180,000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys. Rev. Lett. 111, 104301 (2013)

  36. 36.

    L. Heepe, G. Carbone, E. Pierro, A.E. Kovalev, S.N. Gorb, Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl. Phys. Lett. 104, 011906 (2014)

  37. 37.

    S. N. Gorb, Biological fibrillar adhesives: Functional principles and biomimetic applications. In: da Silva, L.F.M., chsner, A., Adams, R.D. (eds.), Handbook of Adhesion Technology, Springer, 1410-1436 (2011)

  38. 38.

    Q.H. Cheng, B. Chen, H.J. Gao, Y.W. Zhang, Sliding-induced non-uniform pretension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos. J. R. Soc. Interface 9, 283–291 (2012)

  39. 39.

    A. Filippov, V.L. Popov, S.N. Gorb, Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J. Theor. Biol. 276, 126–131 (2011)

  40. 40.

    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair. Nature 405, 681685 (2002)

  41. 41.

    H. Gao, X. Wang, H. Yao, S.N. Gorb, E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275285 (2005)

  42. 42.

    G. Huber, S.N. Gorb, R. Spolenak, E. Arzt, Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 1, 24 (2005)

  43. 43.

    K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209, 3569–3579 (2006)

  44. 44.

    Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, J. Isralachvili, Adhesion and friction in gecko toe attachment and detachment 103, 19230–19325 (2006)

  45. 45.

    S. Niederegger, S. Gorb, Y. Jiao, Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J. Comp. Physiol. A 187, 961970 (2002)

  46. 46.

    S. Niederegger, S.N. Gorb, Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J. Comp. Physiol. A 192, 1223–1232 (2006)

  47. 47.

    E. Wohlfart, J.O. Wolff, E. Arzt, S.N. Gorb, The whole is more than the sum of all its parts: collective effect of spider attachment organs. J. Exp. Biol. 217, 222–224 (2014)

  48. 48.

    V.B. Wigglesworth, How does a fly cling to the under surface of a glass sheet? J. Exp. Biol. 129, 373–376 (1987)

  49. 49.

    A.P. Russell, A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia, Gekkonidae). J. Zool. Lond. 176, 437476 (1975)

Download references


Extensive work of V. Kastner on the preliminary experiments is greatly acknowledged. We would like to thank E. Appel for assistance with Fig. 2a. We would like to thank A. Kovalev for helpful comments on the manuscript. This work was partially supported by CARTRIB Project of The Leverhulme Trust (S. N. Gorb) and projects CP 1550 and 1623 by a grant of the Cluster of Excellence 80 The Future Ocean (L. Heepe and S. N. Gorb). The Future Ocean is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. S. Raguseo greatly acknowledges support of the Erasmus\(+\) programme of the European Union.

Author information

Correspondence to Lars Heepe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8 KB)

Supplementary material 1 (MP4 8575 KB)

Supplementary material 1 (MP4 8575 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heepe, L., Raguseo, S. & Gorb, S.N. An experimental study of double-peeling mechanism inspired by biological adhesive systems. Appl. Phys. A 123, 124 (2017) doi:10.1007/s00339-016-0753-9

Download citation


  • Critical Angle
  • Stance Phase
  • Gait Pattern
  • Adhesive System
  • Optimum Angle