Applied Physics A

, 123:64 | Cite as

Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

  • Abdulrahman Shueai Mohsen Alqadami
  • Mohd Faizal Jamlos
  • Ping Jack Soh
  • Sharul Kamal Abdul Rahim
  • Adam Narbudowicz
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics


A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than −16 dB and mutual coupling of less than −28 dB are achieved at 5.15 GHz WLAN band.


Mutual Coupling MIMO Antenna Desire Frequency Band Normalize Radiation Pattern Metamaterial Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)CrossRefGoogle Scholar
  2. 2.
    A.J. Paulraj, D.A. Gore, R.U. Nabar, H. Bölcskei, An overview of MIMO communications—a key to gigabit wireless, in Proceedings of the IEEE, vol. 92, no. 2 (2004), pp. 198–217Google Scholar
  3. 3.
    P. Fletcher, M. Dean, A. Nix, Mutual coupling in multi-element array antennas and its influence on MIMO channel capacity. Electron. Lett. 39(4), 342–344 (2003)CrossRefGoogle Scholar
  4. 4.
    Z. Li, Z. Du, M. Takahashi, K. Saito, K. Ito, Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Antennas Propag. 60(2), 473–481 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    C.H. See, R.A. Abd-Alhameed, Z.Z. Abidin, N.J. McEwan, P.S. Excell, Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications. IEEE Trans. Antennas Propag. 60(4), 2028–2035 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Zhang, B.K. Lau, Y. Tan, Z. Ying, S. He, Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals. IEEE Trans. 60(3), 1521–1531 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic Band-Gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 51(10), 2936–2946 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Wan Nordin, M.T. Islam, N. Misran, A compact wideband coplanar waveguide fed metamaterial-inspired patch antenna for wireless application. Appl. Phys. A 109(4), 961–965 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Sarkhel, D. Mitra, S.R.B. Chaudhuri, A compact metamaterial with multi-band negative-index characteristics. Appl. Phys. A 122(4), 1–10 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Lai, T. Itoh, C. Caloz, Composite right/lefthanded transmission line metamaterials. IEEE Microw. Mag. 5(3), 34–50 (2004)CrossRefGoogle Scholar
  12. 12.
    Y.H. Xie, C. Zhu, L. Li, C.H. Liang, A novel dual-band metamaterial antenna based on complementary split ring resonators. Microw. Opt. Technol. Lett. 54, 1007–1009 (2012)CrossRefGoogle Scholar
  13. 13.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin wire structures. J. Phys. Condens. Matter 10(22), 4785–4809 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    P. Mookiah, K.R. Dandekar, Metamaterial-substrate antenna array for MIMO communication system. IEEE Trans. Antennas Propag. 57(10), 3283–3292 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M.M. Bait-Suwailam, M.S. Boybay, O.M. Ramahi, Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications. IEEE Trans. Antennas Propag. 58(9), 2894–2902 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Palandoken, A. Grede, H. Henke, Broadband microstrip antenna with left-handed metamaterials. IEEE Trans. Antennas Propag. 57(2), 331–338 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr., J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    D.R. Smith, D.C. Vier, N. Kroll, S. Schultz, Direct calculation of permeability and permittivity for a left-handed metamaterial. Appl. Phys. Lett. 77(14), 2246–2248 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abdulrahman Shueai Mohsen Alqadami
    • 1
  • Mohd Faizal Jamlos
    • 1
    • 2
  • Ping Jack Soh
    • 1
  • Sharul Kamal Abdul Rahim
    • 3
  • Adam Narbudowicz
    • 4
    • 5
  1. 1.Advanced Communication Engineering Centre (ACE), School of Computer and Communication EngineeringUniversiti Malaysia Perlis (UniMAP)KangarMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Malaysia Pahang (UMP)PekanMalaysia
  3. 3.Wireless Communication Centre (WCC)Universiti Teknologi Malaysia (UTM)SkudaiMalaysia
  4. 4.Institute of High Frequency TechnologyRWTH Aachen UniversityAachenGermany
  5. 5.Dublin Institute of TechnologyDublin 8Ireland

Personalised recommendations