Applied Physics A

, 123:66 | Cite as

Structured transparent low emissivity coatings with high microwave transmission

  • Olivia BouvardEmail author
  • Matteo Lanini
  • Luc Burnier
  • Reiner Witte
  • Bernard Cuttat
  • Andrea Salvadè
  • Andreas Schüler


In order to reduce the energy consumption of buildings, modern windows include metal-containing coatings. These coatings strongly attenuate the microwaves used for mobile communications. Here, we present a novel approach to improve radio signal transmission by structuring a low emissivity coating. Laser ablation is used to scribe a line pattern on the coating. The microwave attenuation of the initial coating ranges between −25 and −30 dB between 850 MHz and 3 GHz. The optimized patterning reduces it down to −1.2 ± 0.6 dB. The fraction of the ablated area is relatively low. Our experimental results show that it is possible to reach a level of attenuation close to that of a glass substrate by removing less than 4% of the coating area. The ablated lines are thin enough to not be noticed in most common lighting situations. Therefore, we achieve a dual spectral selectivity: the coated glass is transparent in the visible range, reflective in the infrared and nearly as transparent as its glass substrate to microwaves. Additionally, numerical simulations were performed and show that the attenuation at grazing incidences is dominated by the behaviour of the glass substrate. To the best of our knowledge, it is the first time that experimental evidence for the combination of such properties is reported and that detailed experimental data are compared to numerical simulations. We anticipate that our findings will be of major importance for the building and transportation sectors.


Emissivity Ablate Area Frequency Selective Surface Ablate Line Glass Pane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the funding institutions that make this research possible: Swisselectric Research SER, Swiss Federal Office of Transport BFV and to Prof. P. Oelhafen for initiating the project on the energy efficiency in public transportation. We are also thankful to our industry partners for providing materials and services: A. Marguerit, L. Houlmann, N. Noirjean, J. Maushart from AGC Verres Industriels Moutier; N. Dury and R. Holtz from Class4Laser, Lyss; C. Isenschmid from the railway company BLS. We also thank P. Loesch for technical support, L. Maierova for photography, B. Smith and S. Taylor for proof-reading.


  1. 1.
    Mobile network reception problems in low energy buildings. Working group report. Liikenne-ja viestintäministeriö, 2013Google Scholar
  2. 2.
    A. Asp, Y. Sydorov, M. Valkama, J. Niemela, Radio signal propagation and attenuation measurements for modern residential buildings, 580–584 (2012). doi: 10.1109/GLOCOMW.2012.6477638
  3. 3.
    M. Philippakis, C. Martel, D. Kemp, M. Clift, S. Massey, S. Appleton, W. Damerell, C. Burton, Application of FSS Structures to Selectively Control the Propagation of Signals Into and Out of Buildings (ERA report 2004-0072) (Antenna systems, Era technology Ltd, Dorset, 2004)Google Scholar
  4. 4.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    J. Valentine et al., Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    X. Zheng et al., Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    T.K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995)Google Scholar
  10. 10.
    B. Munk, Finite Antenna Arrays and FSS (IEEE Press; Wiley-Interscience, New York, 2003)CrossRefGoogle Scholar
  11. 11.
    B. Widenberg, J.V. Rodriguez, Design of Energy Saving Windows with High Transmission at 900 MHz and 1800 MHz. in Technical Report LUTEDX/(TEAT-7110/1-14/(2002).
  12. 12.
    G.I. Kiani, L.G. Olsson, A. Karlsson, K.P. Esselle, Transmission of infrared and visible wavelengths through energy-saving glass due to etching of frequency-selective surfaces. IET Microw. Antennas Propag. 4, 955 (2010)CrossRefGoogle Scholar
  13. 13.
    P. Lim, N. Nafarizal, M.Z. Sahdan, S.H. Dahlan, Z. Zainal Abidin, M.Y. Ismail, F. Che Seman, M.K. Suaidi, M.F. Johar, Z.M. Rosli, J.M. Juoi, G.I. Kiani, Optimization of transmission lost for energy saving glass with different sheet resistance values. Adv. Mater. Res. 832, 233–236 (2013)CrossRefGoogle Scholar
  14. 14.
    I. Ullah, X. Zhao, D. Habibi, G. Kiani, Transmission improvement of UMTS and Wi-Fi signals through energy saving glass using FSS. IEEE, pp. 1–5 (2011)Google Scholar
  15. 15.
    R. Mittra, C.-H. Chan, T. Cwik, Techniques for analyzing frequency selective surfaces—a review. IEEE Proc. 76, 1593–1615 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    F. Costa, A. Monorchio, G. Manara, An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. ACES J. 29(12), 963 (2014). Google Scholar
  17. 17.
    F. Costa, A. Monorchio, G. Manara, Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    G. I. Kiani, A. Karlsson, l. Olsson. Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows. CODEN: LUTEDX/(TEAT-7170)/1-7/(2008)Google Scholar
  19. 19.
    R. Witte, et al., Investigation of a reliable all-laser scribing process in thin film Cu(In,Ga)(S,Se)2 manufacturing, in Proceedings of SPIE 8607, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, 86071B (2013). doi: 10.1117/12.2003872
  20. 20.
    NF EN 673. Glass in building, Determination of thermal transmittance (U value) Calculation method, eq. 1-5. 2011. ISSN 0335-39. AFNORGoogle Scholar
  21. 21.
    H. Rahman, P. K. Saha, J. Dowling, T. Curran, Shielding effectiveness measurement techniques for various materials used for EMI shielding, in IEE Colloquium on Screening of Connectors, Cables and Enclosures, pp. 9/1–9/6 (1992)Google Scholar
  22. 22.
    P.F. Wilson, M.T. Ma, J.W. Adams, Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation. IEEE Trans. Electromagn. Compatibil. 30(3), 239–250 (1988). doi: 10.1109/15.3302 CrossRefGoogle Scholar
  23. 23.
    C. A. Grosvenor, D. Novotny, R. Johnk, N. Canales, J. Veneman, Shielding effectiveness measurements using the direct illumination technique, in IEEE International Symposium on Electromagnetic Compatibility, 2002. EMC 2002, vol. 1, pp. 389–394 (2002). doi:  10.1109/ISEMC.2002.1032510
  24. 24.
    Agilent “Time Domain Analysis Using a Network Analyzer”, Application Note 1287-12, Literature Number 5989-5723ENGoogle Scholar
  25. 25.
    IEEE Recommended Practice for Measurement of Shielding Effectiveness of High-Performance Shielding Enclosures, in IEEE Std 299-1969, pp. 0–1 (1969). doi:  10.1109/IEEESTD.1969.120578
  26. 26.
    M. Unser, T. Blu, Generalized smoothing splines and the optimal discretization of the Wiener filter. IEEE Trans. Signal Process. 53(6), 2146–2159 (2005). doi: 10.1109/TSP.2005.847821 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    W. C. Gibson, The Method of Moments in Electromagnetics. Boca Raton: Chapman & Hall/CRC Press, pp. xv + 272 (2008). ISBN: 978-1-4200-6145-1, MR 2503144, Zbl 1175.78002Google Scholar
  28. 28.
    K.A. Michalski, J.R. Mosig, Multilayered media Green’s functions in integral equation formulations. IEEE Trans. Antennas Propag 45(3), 508–519 (1997). doi: 10.1109/8.558666 ADSCrossRefGoogle Scholar
  29. 29.
    T.C. Hales, The honeycomb conjecture. Discrete Comput. Geom. 25, 1–22 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Solar Energy and Building Physics LaboratoryEcole Polytechnique Fédérale de Lausanne (EPFL LESO-PB)LausanneSwitzerland
  2. 2.Telecom Telemetry High Frequency Lab, SUPSI, Dipartimento Tecnologie InnovativeUniversity of Applied Sciences of Southern SwitzerlandMannoSwitzerland
  3. 3.Class 4 Laser Professionals AGBurgdorfSwitzerland
  4. 4.AGC Verres Industriels SAMoutierSwitzerland

Personalised recommendations