Applied Physics A

, 123:22 | Cite as

Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications

  • Abdulrahman Shueai Mohsen Alqadami
  • Mohd Faizal Jamlos
  • Ping Jack Soh
  • Sharul Kamal Abdul Rahim
  • Guy A. E. Vandenbosch
  • Adam Narbudowicz
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics


A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.


Patch Antenna Radiation Efficiency Negative Refractive Index Negative Permittivity Unit Cell Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.A. Wan Nordin, M.T. Islam, N. Misran, A compact wideband coplanar waveguide fed metamaterial-inspired patch antenna for wireless application. Appl. Phys. A 109(4), 961–965 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Sarkhel, D. Mitra, S.R.B. Chaudhuri, A compact metamaterial with multi-band negative-index characteristics. Appl. Phys. A 122(4), 1–10 (2016)CrossRefGoogle Scholar
  3. 3.
    S.A. Pope, Double negative elastic metamaterial design through electrical–mechanical circuit analogies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(7), 1467–1474 (2013)CrossRefGoogle Scholar
  4. 4.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J.C. Myers, P. Chahal, E. Rothwell, L. Kempel, A multilayered metamaterial-inspired miniaturized dynamically tunable antenna. IEEE Trans. Antennas Propag. 63(4), 1546–1553 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S.N. Burokur, A.C. Lepage, S. Varault, X. Begaud, G.P. Piau, A. de Lustrac, Low-profile metamaterial-based L-band antennas. Appl. Phys. A 122(4), 1–7 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Jin, R.W. Ziolkowski, Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements. IEEE Trans. Antennas Propag. 58(2), 318–327 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C.A. Balanis, Antenna Theory: Analysis And Design (Wiley, Hoboken, 2005)Google Scholar
  10. 10.
    O.S. Kim, O. Breinbjerg, Miniaturised self-resonant split-ring resonator antenna. Electron. Lett. 45(4), 196–197 (2009)CrossRefGoogle Scholar
  11. 11.
    Yuandan Dong, Tatsuo Itoh, Metamaterial-based antennas. Proc. IEEE 100(7), 2271–2285 (2012)CrossRefGoogle Scholar
  12. 12.
    M.M. Islam, M.T. Islam, M. Samsuzzaman, M.R.I. Faruque, N. Misran, M.F. Mansor, A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 8(2), 392–407 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    K. Li, C. Zhu, L. Li, Y.M. Cai, C.H. Liang, Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas Wirel. Propag. Lett. 12, 678 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Chen, P. Hsu, A compact strip dipole coupled split-ring resonator antenna for RFID tags. IEEE Trans. Antennas Propag. 61(11), 5372–5376 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    X.H. Song, L.L. Chen, C.H. Wu, Y.N. Yuan, Study on an SRR-shaped left-handed material patch antenna. J. Opt. 13(3), 35402 (2011)CrossRefGoogle Scholar
  16. 16.
    D.R. Jackson, N.G. Alexopoulos, Communications: simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Trans. Antennas Propag. 39(3), 407–410 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    G.S. Smith, Efficiency of electrically small antennas combined with matching networks. IEEE Trans. Antennas Propag. 25(3), 369–373 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    A. Galehdar, D.V. Thiel, S.G. O’Keefe, Antenna efficiency calculations for electrically small, RFID antennas. IEEE Antennas Wirel. Propag. Lett. 6, 156–159 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    A. Presse, A.C. Tarot, Miniaturized bendable 400 MHz artificial magnetic conductor. Appl. Phys. A 122(4), 1–5 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abdulrahman Shueai Mohsen Alqadami
    • 1
  • Mohd Faizal Jamlos
    • 1
    • 2
  • Ping Jack Soh
    • 1
  • Sharul Kamal Abdul Rahim
    • 3
  • Guy A. E. Vandenbosch
    • 4
  • Adam Narbudowicz
    • 5
    • 6
  1. 1.Advanced Communication Engineering Centre (ACE), School of Computer and Communication EngineeringUniversiti Malaysia Perlis (UniMAP)KangarMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Malaysia Pahang (UMP)PekanMalaysia
  3. 3.Wireless Communication Centre (WCC)Universiti Teknologi Malaysia (UTM)SkudaiMalaysia
  4. 4.ESAT-TELEMIC Research DivisionKU LeuvenLouvainBelgium
  5. 5.Institute of High Frequency TechnologyRWTH Aachen UniversityAachenGermany
  6. 6.Dublin Institute of TechnologyDublin 8Ireland

Personalised recommendations