Applied Physics A

, 123:53 | Cite as

Bandwidth enhancement of an array antenna using slotted artificial magnetic conductors

  • Herwansyah Lago
  • Mohd Faizal Jamlos
  • Ping Jack Soh
  • M. H. Muslim
  • Guy A. E. Vandenbosch
  • Adam Narbudowicz
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics


An artificial magnetic conductor (AMC)-integrated array antenna operating at 9.41 GHz is proposed in this work. The AMC plane consists of an array of 9 × 12 rectangular elements slotted using four circular slots. The rectangular circular-slotted AMC unit cell acts as a metamaterial with high permeability of 10.05 and non-unity permittivity of 1.52, respectively. The integration of the AMC plane into a reference array antenna operating at 9.41 GHz increases the impedance bandwidth by 76%, from 1.12 to 1.98 GHz. Besides that, the efficiency is also enhanced from 95.91 to 96.31%. Both reference and proposed antenna show a satisfactory agreement in terms of simulated and measured reflection coefficients and radiation patterns.


Array Antenna Patch Antenna Perfect Electric Conductor Impedance Bandwidth Artificial Magnetic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the members of the Advanced Communication Engineering (ACE) for their valuable input and discussions. This work was supported by the FRGS Grant 9003-0522.


  1. 1.
    Y. Zhang, B.Z. Wang, W. Shao, W. Yu, R. Mittra, Artificial ground planes for performance enhancement of microstrip antennas. J. Electromagn. Waves Appl. 25, 597–606 (2011)CrossRefGoogle Scholar
  2. 2.
    F. Costa, A. Monorchio, Multiband electromagnetic wave absorber based on reactive impedance ground planes. IET Microw. Antennas Propag. 4, 1720–1727 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Yan, P.J. Soh, G.A.E. Vandenbosch, Low-profile dual-band textile antenna with artificial magnetic conductor plane. IEEE Trans. Antennas Propag. 62, 6487–6490 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Zhou, H.H. Ouslimani, A. Priou, A. Ourir, O. Maas, Understanding the behavior of miniaturized metamaterial-based dipole antennas in leaky wave regime. Appl. Phys. Lett. 106, 145–149 (2012)Google Scholar
  5. 5.
    D. Segovia-Vargas, F.J. Herraiz-Martínez, E. Ugarte-Munõz, L.E. García-Munõz, V. González-Posadas, Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading. Prog. Electromagn. Res. 133, 91–115 (2012)CrossRefGoogle Scholar
  6. 6.
    M.S. Alam, M.T. Islam, N. Misran, A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement. Prog. Electromagn. Res. 130, 389–409 (2012)CrossRefGoogle Scholar
  7. 7.
    J.J. Tiang, M.T. Islam, N. Misran, J.S. Mandeep, Circular microstrip slot antenna for dual-frequency RFID application. Prog. Electromagn. Res. 120, 499–512 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Foroozesh, L. Shafai, Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement. Can. J. Electr. Comput. Eng. 33, 87–98 (2008)CrossRefGoogle Scholar
  9. 9.
    R. Dewan, S.K.A. Rahim, S.F. Ausordin, H.U. Iddi, M.Z.Z.A. Aziz, X-polarization array antenna with parallel feeding for WiMAX 3.55 GHz application, in IEEE International RF and Microwave Conference, pp. 368–372 (2011)Google Scholar
  10. 10.
    A.M. Kordalivand, T.A. Rahman, Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method. Prog. Electromagn. Res. 137, 599–619 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Cai, G.M. Wang, X.F. Zhang, Y.W. Wang, B.F. Zong, H.X. Xu, Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials. IEEE Trans. Antennas Propag. 63, 2306–2311 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    G.F. Khodaei, J. Nourinia, C. Ghobadi, A practical miniaturized U-slot patch antenna with enhanced bandwidth. Prog. Electromagn. Res. B 3, 47–62 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Farzami, K. Forooraghi, M. Norooziarab, Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate. IEEE Antennas Wirel. Propag. Lett. 10, 1540–1542 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Obol, M.N. Afsar, Simultaneous permittivity and permeability characteristics of magnetically biased thin ferrite disk using rectangular waveguide. IEEE Trans. Magn. 48, 3068–3071 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Herwansyah Lago
    • 1
  • Mohd Faizal Jamlos
    • 1
    • 2
  • Ping Jack Soh
    • 1
  • M. H. Muslim
    • 3
  • Guy A. E. Vandenbosch
    • 4
  • Adam Narbudowicz
    • 5
    • 6
  1. 1.Advanced Communication Engineering Centre (ACE), School of Computer and Communication EngineeringUniversiti Malaysia PerlisKangarMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Malaysia PahangPekanMalaysia
  3. 3.National Agency Space of Malaysia (ANGKASA)Ministry of Science, Technology and InnovationKuala LumpurMalaysia
  4. 4.ESAT-TELEMIC Research DivisionKU LeuvenLouvainBelgium
  5. 5.Institute of High Frequency TechnologyRWTH Aachen UniversityAachenGermany
  6. 6.Dublin Institute of TechnologyDublin 8Ireland

Personalised recommendations