Applied Physics A

, 123:25 | Cite as

Tuning from green to red the upconversion emission of Y2O3:Er3+–Yb3+ nanophosphors

  • L. A. Diaz-Torres
  • P. Salas
  • J. Oliva
  • E. Resendiz-L
  • C. Rodriguez-Gonzalez
  • O. Meza


In this work, the structural, morphological and luminescent properties of Y2O3 nanophosphors doped with Er3+ (1 mol%) and different Yb3+ concentrations (2–12 mol%) have been studied. Those nanophosphors were synthesized using a simple hydrothermal method. XRD analysis indicates that all the samples presented a pure cubic phase even for Yb concentrations as high as 12 mol%. In addition, SEM images show nanoparticles with quasi-spherical shapes with average sizes in the range of 300–340 nm. Photoluminescence measurements obtained after excitation at 967 nm revealed that our samples have strong green (563 nm) and red emissions (660 nm) corresponding to 2H11/2 + 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions, respectively. We also observed that the green band is quenched and the red emission enhanced as the Yb concentration increases. In consequence, the CIE coordinates changed from (0.35, 0.64) in the green region to (0.59, 0.39) in the red region. Thus, the tuning properties of Y2O3 nanophosphors suggest that they are good candidates for applications in lighting.


  1. 1.
    G. Boulon, Opt. Mater. 34, 499–512 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Li, L. Zheng, L. Zhang, L. Xiong, J. Lumin. 126, 481–486 (2007)CrossRefGoogle Scholar
  3. 3.
    G. Wang, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, L. Wang, G. Wei, P. Zhu, R. Kim, Opt. Mater. 31, 296–299 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Ledemi, D. Manzani, S.J.L. Ribeiro, Y. Messaddeq, Opt. Mater. 33, 1916–1920 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    I. Hyppanen, J. Holsa, J. Kankare, M. Lastusaari, L. Pihlgren, Opt. Mater. 31, 1787–1790 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. López-Luke, E. De la Rosa, D. Sólis, P. Salas, C. Angeles-Chavez, A. Montoya, L.A. Díaz-Torres, S. Bribiesca, Opt. Mater. 29, 31–37 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Fu, T. Sheng, Z. Wu, Y. Yu, T. Cui, Mater. Res. Bull. 56, 138–142 (2014)CrossRefGoogle Scholar
  8. 8.
    X.X. Luo, W.H. Cao, Y. Tian, Opt. Mater. 30, 351–356 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    D.K. Chatterjee, A.J. Rufaihah, Y. Zhang, Biomaterials 29, 937–943 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Ludwiczak, W. Jantsch, J. Lumin. 158, 384–389 (2015)CrossRefGoogle Scholar
  11. 11.
    W. Van Sark, J. De Wild, J.K. Rath, A. Meijerink, R. El Schropp, Nanoscale Res. Lett. 8, 1–10 (2013)CrossRefGoogle Scholar
  12. 12.
    H.S. Mader, P. Kele, S.M. Saleh, O.S. Wolfbeis, Curr. Opin. Chem. Biol. 14, 582–596 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Stepuk, D. Mohn, R.N. Grass, M. Zehnder, K.W. Krämer, F. Pellé, A. Ferrier, W.J. Stark, Dent. Mater. 28, 304–311 (2012)CrossRefGoogle Scholar
  14. 14.
    F. Auzel, Chem. Rev. 104, 139–173 (2004)CrossRefGoogle Scholar
  15. 15.
    N. Wang, X. Zhang, Z. Bai, Q. Liu, L. Lu, X. Mi, H. Sun, X. Wang, Powder Technol. 203, 458–461 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Liu, H. Jiang, Y. Chen, X. Zhang, Z. Zhang, Y. Wang, J. Lumin. 143, 423–431 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Yan, R. Yu, D. Wang, J. Deng, J. Chen, X. Xing, Solid State Sci. 13, 1060–1064 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui, J. Lumin. 119–120, 258–263 (2006)CrossRefGoogle Scholar
  19. 19.
    Y. Yu, D. Qi, H. Zhao, J. Lumin. 143, 388–392 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Jiu, Y. Fu, L. Zhang, Y. Sun, Y. Wang, Opt. Mater. 35, 141–145 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Martínez, J. Morales, P. Salas, C. Angeles-Chávez, L.A. Díaz-Torres, E. De la Rosa, Microelectron. J. 39, 551–555 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Eilers, J. Alloys Compd. 474, 569–572 (2009)CrossRefGoogle Scholar
  23. 23.
    A.M. Pires, O.A. Serra, M.R. Davolos, J. Alloys Compd. 374, 181–184 (2004)CrossRefGoogle Scholar
  24. 24.
    V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, M.D. Dramicanin, Ceram. Int. 39, 1129–1134 (2013)CrossRefGoogle Scholar
  25. 25.
    V. Lojpur, L. Mancic, P. Vulic, M.D. Dramicanin, M.E. Rabanal, O. Milosevic, Ceram. Int. 40, 3089–3095 (2014)CrossRefGoogle Scholar
  26. 26.
    C. Tan, Y. Liu, Y. Han, W. Li, J. Lumin. 131, 1198–1202 (2011)CrossRefGoogle Scholar
  27. 27.
    V.M. Lojpur, P.S. Ahrenkiel, M.D. Dramićanin, Nanoscale Res. Lett. 8, 131 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Q. Lu, Y. Hou, A. Tang, H. Wu, F. Teng, Appl. Phys. Lett. 102, 233103 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    E. Resendiz, L.A. Diaz-Torres, L.O. Meza-Espinoza, C. Rodríguez-González, P. Salas, J. Nanomater. 2015, 763617 (2015)CrossRefGoogle Scholar
  30. 30.
    C. Jiang, L. Fang, M. Shen, F. Zheng, X. Wu, Appl. Phys. Lett. 94, 071110 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    T. López-Luke, E. De la Rosa, I. Campos Villalobos, R.A. Rodriguez, C. Ángles-Chávez, P. Salas, D.A. Wheeler, J.Z. Zhang, J. Lumin 45, 292 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. A. Diaz-Torres
    • 1
  • P. Salas
    • 2
  • J. Oliva
    • 3
  • E. Resendiz-L
    • 2
  • C. Rodriguez-Gonzalez
    • 2
  • O. Meza
    • 4
  1. 1.Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA)Centro de Investigaciones en ÓpticaLeónMexico
  2. 2.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  3. 3.Conacyt-Facultad Ciencias Quimicas Universidad Autonoma de CoahuilaSaltilloMexico
  4. 4.Instituto de FísicaBenemerita Universidad Autonoma de PueblaCentro HistóricoMexico

Personalised recommendations