Applied Physics A

, 123:39 | Cite as

Synthesis and optical properties study of nanocomposites based on AuNPs and AgNPs obtained by laser ablation in liquid monomer

  • Natalia A. Zulina
  • Ilia M. Pavlovetc
  • Mikhail A. Baranov
  • Viacheslav O. Kaliabin
  • Igor Yu. Denisyuk
Article
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics

Abstract

In this work, Ag and Au nanoparticles (AgNPs and AuNPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod and gold film in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 30 to 130 nm. Nanocomposites films were prepared from obtained stable colloid solution by photocuring. To prepare solid film based on aliphatic polymer IDA long molecules cross-linking, 1,6-Hexandiol diacrylate was used. Obtained films were transparent, homogenous and colored in brown for AgNPs and purple for AuNPs-filled nanocomposites. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open and close aperture. The real and imaginary parts of third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3) = 1.31 × 10−5 (esu) and Imχ(3) = 7.64 × 10−5 (esu), for samples negative nonlinear refractive index was obtained, which corresponds to self-defocusing effect.

References

  1. 1.
    I.-Y. Jeon, Y.-B. Baek, Materials 3, 3654 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    O.V. Sakhno, L.M. Goldenberg, J. Stumpe, T.N. Smirnova, J. Opt. A: Pure Appl. Opt. 11, 024013 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Opt. Commun. 240, 437–448 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kassavetis, S. Kaziannis, N. Pliatsikas, A. Avgeropoulos, A.E. Karantzalis, C. Kosmidis, E. Lidorikis, P. Patsalas, Appl. Surf. Sci. 336, 262–266 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Tamaki, T. Asahi, H. Masuhara, J. Phys. Chem. 106, 241–243 (2002)CrossRefGoogle Scholar
  6. 6.
    S. Barcikowski, M. Hustedt, B. Chichkov, Polimery 53(9), 657–662 (2008)Google Scholar
  7. 7.
    R.A. Ganeev, A.S. Zakirov, G.S. Boltaev, R.I. Tugushev, T. Usmanov et al. Opt. Mater. 33, 419–423 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H.O. Jeschke, M.E. Garsia, K.H. Bennemann, Phys. Rev. Lett. 87, 015003 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J. Burunkova, S. Kokenyesi, I. Csarnovics, A. Bonyár, M. Veres, A. Csike Eur. Polym. J. 64, 189–195 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Burunkova, I. Csarnovics, I. Denisyuk, L. Daróczi, S. Kökényesi, J. Non-Cryst. Solids 402, 200–203 (2014)Google Scholar
  12. 12.
    M. Sheik-Bahae, A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, J. Quant. Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    K. Lance Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003)Google Scholar
  14. 14.
    D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to spectroscopy, 3rd edn. (Cole Publ. Co., Brooks, 2000), p. 784Google Scholar
  15. 15.
    V. Subhashini, S. Ponnusamy, C. Muthamizhchelvan, B. Dhanalakshmi, Opt. Mater. 35, 1327–1334 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Qu, Y. Gao, X. Jiang, K. Hirao, Opt. Commun. 224, 321–327 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    M.D. Zidan, A.W. Allaf, A. Allahham, A. AL-Zier, Opt. Laser Technol. 80, 72–76 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations