Applied Physics A

, 122:1068 | Cite as

Controlled electromigration and oxidation of free-standing copper wires

  • J. S. Hauser
  • J. Schwichtenberg
  • M. MarzEmail author
  • C. Sürgers
  • A. Seiler
  • U. Gerhards
  • F. Messerschmidt
  • A. Hensel
  • R. Dittmeyer
  • H. v. Löhneysen
  • R. Hoffmann-Vogel


We have studied controlled electromigration (EM) in free-standing copper wires. Besides electrical characterization by voltage–current measurements, structural analyses have been performed by means of scanning electron microscopy and cross-sectional microprobe measurements. We have found that oxidation during the EM in air stabilizes the free-standing wire against uncontrolled blowing, making it possible to thin the conductive part of the wire down to a conductance of a few conductance quanta \(G_0=2e^2{/}h\). The decisive influence of oxidation by air on the EM process was confirmed by control experiments performed under ultra-high vacuum conditions. In line with these findings, free-standing Au wires were difficult to thin down reproducibly to a conductance of a few \(G_0\). Estimates of the local temperature in the free-standing wire are obtained from finite element method calculations.


Cu2O Joule Heating Outer Ring Conductance Quantum Wire Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank S. Schneider for help with the SEM and C. Pérez León for useful discussions. M. Marz is grateful for support by the Alexander von Humboldt Foundation (Alexander von Humboldt-Stiftung). This work was supported by the ERC Starting Grant NANOCONTACTS (No. 239838) and by the Ministry of Science and Arts (BW), in the framework of its Schlieben-Lange program (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg).


  1. 1.
    J. Black, IEEE Trans. Electron Dev. 16, 338 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    C.S. Hau-Riege, Microelectron. Reliab. 44, 195 (2004)CrossRefGoogle Scholar
  3. 3.
    D.R. Strachan, D.E. Smith, D.E. Johnston, T.H. Park, M.J. Therien, D.A. Bonnell, A.T. Johnson, Appl. Phys. Lett. 86(4), 043109 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R. Hoffmann, D. Weissenberger, J. Hawecker, D. Stöffler, Appl. Phys. Lett. 93(4), 043118 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nature 407(6800), 57 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344(6188), 1135 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    G. Esen, M.S. Fuhrer, Appl. Phys. Lett. 87(26), 263101 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    D. Stöffler, S. Fostner, P. Grütter, R. Hoffmann-Vogel, Phys. Rev. B 85(3), 033404 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377(23), 81 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    K. Hansen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Phys. Rev. B 56, 2208 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Bakker, Y. Noat, A.I. Yanson, J.M. van Ruitenbeek, Phys. Rev. B 65, 235416 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M. Kiguchi, T. Konishi, S. Miura, K. Murakoshi, Nanotechnology 18, 424011 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    I.K. Yanson, O.I. Shklyarevskii, S. Csonka, H. Kempen, S. Speller, A.I. Yanson, J.M. van Ruitenbeek, Phys. Rev. Lett. 95, 256806 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Kurui, Y. Oshima, K. Takayanagi, J. Phys. Soc. Jpn. 76, 123601 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    R. de Orio, H. Ceric, S. Selberherr, Microelectron. Reliab. 50(6), 775 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Kirchheim, Acta Metall. Mater. 40, 309 (1992)CrossRefGoogle Scholar
  17. 17.
    M.A. Korhonen, P. Borgesen, K.N. Tu, C.Y. Li, J. Appl. Phys. 73, 3790 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    C.K. Hu, L. Gignac, E. Liniger, B. Herbst, D.L. Rath, S.T. Chen, S. Kaldor, A. Simon, W.T. Tseng, Appl. Phys. Lett. 83, 869 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Z.S. Choi, R. Mönig, C.V. Thompson, J. Appl. Phys. 102, 083509 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R.C. Weast, M.J. Astle, W.H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2005)Google Scholar
  21. 21.
    O. Madelung, U. Rössler, M. Schulz, SpringerMaterials; sm_lbs_978-3-540-31360-1_68 (Springer, Heidelberg, 1998)Google Scholar
  22. 22.
    Z.M. Wu, M. Steinacher, R. Huber, M. Calame, S.J. van der Molen, C. Schönenberger, Appl. Phys. Lett. 91(5), 053118 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Campbell, R.G. Knobel, Appl. Phys. Lett. 102(2), 023105 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Kanamaru, M. Ando, J. Shirakashi, J. Vac. Sci. Technol. B 33(2), 02B106 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Kießig, R. Schäfer, H.v. Löhneysen, New J. Phys. 16(1), 013017 (2014)CrossRefGoogle Scholar
  26. 26.
    Comsol Inc., COMSOL Multiphysics 4.3a.
  27. 27.
    D.C. Giancoli, Physics: Principles with Applications, 3rd edn. (Prentice-Hall International, London, 1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. S. Hauser
    • 1
  • J. Schwichtenberg
    • 1
  • M. Marz
    • 1
    Email author
  • C. Sürgers
    • 1
  • A. Seiler
    • 1
  • U. Gerhards
    • 2
  • F. Messerschmidt
    • 2
  • A. Hensel
    • 2
  • R. Dittmeyer
    • 2
  • H. v. Löhneysen
    • 1
    • 3
  • R. Hoffmann-Vogel
    • 1
    • 4
  1. 1.Physikalisches InstitutKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institut für MikroverfahrenstechnikKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institut für FestkörperphysikKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institut für Angewandte PhysikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations