Advertisement

Applied Physics A

, 122:1031 | Cite as

A structural approach in the study of bones: fossil and burnt bones at nanosize scale

  • Giampaolo PigaEmail author
  • Maria Dolors Baró
  • Irati Golvano Escobal
  • David Gonçalves
  • Calil Makhoul
  • Ana Amarante
  • Assumpció Malgosa
  • Stefano Enzo
  • Sebastiano Garroni
Article
Part of the following topical collections:
  1. Innovation in Art Research and Technology

Abstract

We review the different factors affecting significantly mineral structure and composition of bones. Particularly, it is assessed that micro-nanostructural and chemical properties of skeleton bones change drastically during burning; the micro- and nanostructural changes attending those phases manifest themselves, amongst others, in observable alterations to the bones colour, morphology, microstructure, mechanical strength and crystallinity. Intense changes involving the structure and chemical composition of bones also occur during the fossilization process. Bioapatite material is contaminated by an heavy fluorination process which, on a long-time scale reduces sensibly the volume of the original unit cell, mainly the a-axis of the hexagonal P63/m space group. Moreover, the bioapatite suffers to a varying degree of extent by phase contamination from the nearby environment, to the point that rarely a fluorapatite single phase may be found in fossil bones here examined. TEM images supply precise and localized information, on apatite crystal shape and dimension, and on different processes that occur during thermal processes or fossilization of ancient bone, complementary to that given by X-ray diffraction and Attenuated Total Reflection Infrared spectroscopy. We are presenting a synthesis of XRD, ATR-IR and TEM results on the nanostructure of various modern, burned and palaeontological bones.

Keywords

Average Crystallite Size Fluorapatite Fossil Bone Dicalcium Phosphate Dihydrate Burned Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Dr. Àngel Galobart (Institut Català de Paleontologia, Sabadell-Barcelona, Spain) for supplying the fossil osseous materials employed in this study. The authors also thank the Serveis de Microscopia, Dr. Eva Pellicer and Elisa Tolu (Universitat Autonoma de Barcelona) for their technical assistance. This work is supported by Autonomous Region of Sardinia (LR3/2008-R.Cervelli, S.Politiche), with the research project titled: “Archaeometric and physico-chemical investigation using a multi-technique approach on archaeological, anthropological and paleontological materials from the Mediterranean area and Sardinia”.

References

  1. 1.
    E.T. Stathopoulou, V. Psycharis, G.D. Chryssikos, Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 168–174 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Piga, A. Santos-Cubedo, S. Moya Solà, A. Brunetti, A. Malgosa, S. Enzo, J. Archaeol. Sci. 36(9), 1857–1868 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Piga, A. Santos-Cubedo, A. Brunetti, M. Piccinini, A. Malgosa, E. Napolitano, S. Enzo, Palaeogeogr. Palaeoclimatol. Palaeoecol. 310(1–2), 92–107 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Piga, M. Guirguis, P. Bartoloni, A. Malgosa, S. Enzo, Int. J. Osteoarchaeol. 20, 144–157 (2010)Google Scholar
  5. 5.
    G. Piga, J.H. Hernández-Gasch, A. Malgosa, M.L. Ganadu, S. Enzo, Homo 61, 440–452 (2010)CrossRefGoogle Scholar
  6. 6.
    G. Piga, A. Brunetti, B. Lasio, L. Malfatti, À. Galobart, F.M. Dalla Vecchia, S. Enzo, Appl. Phys. A 118, 487–496 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    G. Piga, J. Marmi, A. Galobart, A. Brunetti, B. Lasio, L. Malfatti, S. Enzo, Spectrochim. Acta B 119, 50–64 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Weiner, W. Traub, Faseb J. 6, 879–885 (1992)Google Scholar
  9. 9.
    J.-Y. Rho, L. Kuhn-Spearing, P. Ziuopos, Med. Eng. Phys. 20, 92–102 (1998)CrossRefGoogle Scholar
  10. 10.
    S. Weiner, H.D. Wagner, Annu. Rev. Mater. Sci. 28, 271–298 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)Google Scholar
  12. 12.
    X.Y. Wang, Y. Zuo, D. Huang, X.-D. Hou, Y.-B. Li, Biomed. Environ. Sci. 23, 473–480 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Weiner, P.A. Price, Calcified Tissue Int. 39, 365–375 (1986)CrossRefGoogle Scholar
  14. 14.
    H.D. Wagner, S. Weiner, J. Biomech. 25, 1311–1320 (1992)CrossRefGoogle Scholar
  15. 15.
    M. D’Elia, G. Gianfrate, G. Quarta, L. Giotta, G. Giancane, L. Calcagnile, Radiocarbon 49, 201–210 (2007)CrossRefGoogle Scholar
  16. 16.
    S.E. Etok, E. Valsami-Jones, T.J. Wess, J.C. Hiller, C.A. Maxwell, K.D. Rogers, D.A.C. Manning, M.L. White, E. Lopez-Capel, M.J. Collins, M. Buckley, K.E.H. Penkman, S.L. Woodgate, J. Mater. Sci. 42, 9807–9816 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    L.D. Mkukuma, J.M.S. Skakle, I.R. Gibson, C.T. Imrie, R.M. Aspden, D.W.L. Hukins, Calcified Tissue Int. 75, 321–328 (2004)CrossRefGoogle Scholar
  18. 18.
    L. Berzina-Cimdina, N. Borodajenko, in Materials Science, Engineering and Technology, ed. by T. Theophanides. InTech. http://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology/research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy. ISBN: 978-953-51-0537-4, (2012)
  19. 19.
    J.C. Elliott, R.M. Wilson, S.E.P. Dowker, Adv. X Ray Anal. 45, 172–181 (2002)Google Scholar
  20. 20.
    G. Piga, T.J.U. Thompson, A. Malgosa, S. Enzo, J. Forensic Sci. 54, 534–539 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Piga, G. Solinas, T.J.U. Thompson, A. Brunetti, A. Malgosa, S. Enzo, J. Archaeol. Sci. 40, 778–785 (2013)CrossRefGoogle Scholar
  22. 22.
    E.M. Boatman, R. Gronsky, M.B. Goodwin, R.O. Ritchie, Micros. Today 21(5), 34–40 (2013)CrossRefGoogle Scholar
  23. 23.
    I. Reiche, C. Vignaud, M. Menu, Solid State Sci. 2, 625–636 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    I. Reiche, C. Vignaud, M. Menu, Archaeometry 44(3), 447–459 (2002)CrossRefGoogle Scholar
  25. 25.
    M.T. Ferreira, R. Vicente, D. Navega, D. Gonçalves, F. Curate, E. Cunha, Forensic Sci. Int. 245, 202.e1–202.e5 (2014)CrossRefGoogle Scholar
  26. 26.
    H.M. Rietveld, Acta Crystallogr. 22, 151–152 (1967)CrossRefGoogle Scholar
  27. 27.
    L. Lutterotti, Nucl. Inst. Methods Phys. Res. B 268, 334–340 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    S. Grazulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quiro, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, J. Appl. Cryst. 42, 726–729 (2009)CrossRefGoogle Scholar
  29. 29.
    N.C. Popa, J. Appl. Crystallogr. 31, 176–180 (1998)CrossRefGoogle Scholar
  30. 30.
    S. Weiner, O. Bar Yosef, J. Archaeol. Sci. 17, 187–196 (1990)CrossRefGoogle Scholar
  31. 31.
    S. Weiner, P. Goldberg, O. Bar Yosef, J. Archaeol. Sci. 20, 613–628 (1993)CrossRefGoogle Scholar
  32. 32.
    R.E.M. Hedges, A.R. Millard, A.W.G. Pike, J. Archaeol. Sci. 22, 201–209 (1995)CrossRefGoogle Scholar
  33. 33.
    A. Sillen, J. Parkington, J. Archaeol. Sci. 23, 535–542 (1996)CrossRefGoogle Scholar
  34. 34.
    V. Michel, P. Ildefonse, G. Morin, Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 109–119 (1996)CrossRefGoogle Scholar
  35. 35.
    L.E. Wright, H.P. Schwarcz, J. Archaeol. Sci. 23, 933–944 (1996)CrossRefGoogle Scholar
  36. 36.
    K.E. Squires, T.J.U. Thompson, M. Islam, A. Chamberlain, J. Archaeol. Sci. 38, 2399–2409 (2011)CrossRefGoogle Scholar
  37. 37.
    G. Piga, A. Malgosa, T.J.U. Thompson, M. Guirguis, S. Enzo, Int. J. Osteoarchaeol. 25, 146–159 (2015)CrossRefGoogle Scholar
  38. 38.
    G. Piga, M. Guirguis, T.J.U. Thompson, A. Isidro, S. Enzo, A. Malgosa, Homo 61, 50–64 (2016)CrossRefGoogle Scholar
  39. 39.
    G. Ma, X.Y. Liu, Cryst. Growth Des. 9, 2991–2994 (2009)CrossRefGoogle Scholar
  40. 40.
    K. Sudarsanan, P.E. Mackie, R.A. Young, Mat. Res. Bull. 7, 1331–1338 (1972)CrossRefGoogle Scholar
  41. 41.
    K. Sudarsanan, R.A. Young, Acta Cryst. B. 34, 1401–1407 (1978)CrossRefGoogle Scholar
  42. 42.
    J. Elorza, H. Astibia, X. Murelaga, X. Pereda-Suberbiola, Cretac. Res. 20, 169–187 (1999)CrossRefGoogle Scholar
  43. 43.
    B. Perdikatsis, Mat. Sci. Forum 79, 809–814 (1991)CrossRefGoogle Scholar
  44. 44.
    Y. Kolodny, B. Luz, M. Sander, W.A. Clemens, Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 161–171 (1996)CrossRefGoogle Scholar
  45. 45.
    M.J. Kohn, T.E. Cerling, in Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Mineralogical Society of America, Washington, 2002), pp. 455–488Google Scholar
  46. 46.
    S.K. Dwivedi, S. Dey, D. Swarup, Sci. Total Environ. 207, 105–109 (1997)CrossRefGoogle Scholar
  47. 47.
    G. Piga, D. Gonçalves, T.J.U. Thompson, A. Brunetti, A. Malgosa, S. Enzo. Int. J. Spectrosc. Article ID 4810149. doi:  10.1155/2016/4810149 (2016)
  48. 48.
    G. Monge, M.I. Carretero, M. Pozo, C. Barroso, J. Archaeol. Sci. 46, 6–15 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Pina, J.M.F. Ferreira, Materials 3, 519–535 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    G. Cama, B. Gharibi, J.C. Knowles, S. Romeed, L. DiSilvio, S. Deb, J. R. Soc. Interface 11, 20140727 (2014)CrossRefGoogle Scholar
  51. 51.
    R.M. Wilson, J.C. Elliott, S.E.P. Dowker, L.M. Rodriguez-Lorenzo, Biomaterials 26, 1317–1327 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giampaolo Piga
    • 1
    Email author
  • Maria Dolors Baró
    • 2
  • Irati Golvano Escobal
    • 2
  • David Gonçalves
    • 3
    • 4
    • 5
  • Calil Makhoul
    • 5
  • Ana Amarante
    • 6
  • Assumpció Malgosa
    • 7
  • Stefano Enzo
    • 8
  • Sebastiano Garroni
    • 8
  1. 1.POLCOMING-Department of Political Science, Communication, Engineering and Information TechnologiesUniversity of SassariSassariItaly
  2. 2.Departament de FísicaUniversitat Autònoma de Barcelona (UAB)BellaterraSpain
  3. 3.Department of Life Sciences, Research Centre for Anthropology and HealthUniversity of CoimbraCoimbraPortugal
  4. 4.Archaeosciences LaboratoryDirectorate General for Cultural Heritage and LARC/CIBIO/InBIOLisbonPortugal
  5. 5.Department of Life Sciences, Centre for Functional EcologyUniversity of CoimbraCoimbraPortugal
  6. 6.Department of Life Sciences, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  7. 7.GROB (Grup de Recerca en OsteoBiografia), Unitat d’Antropologia Biològica, Dept. BABVE, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  8. 8.Department of Chemistry and PharmacyUniversity of SassariSassariItaly

Personalised recommendations