Applied Physics A

, 122:1052 | Cite as

Effect of cooling condition and Ag on the growth of intermetallic compounds in Sn-based solder joints

  • Haoran Ma
  • Anil Kunwar
  • Bingfeng Guo
  • Junhao Sun
  • Chengrong Jiang
  • Yunpeng Wang
  • Xueguan Song
  • Ning Zhao
  • Haitao Ma


The intermetallic compound growth in Sn/Cu and Sn–3.5Ag/Cu solder joints undergoing cooling has been in-situ observed using synchrotron radiation X-ray imaging technique. The overall thickness of intermetallic compound attained during cooling condition is dependent on the rates of Cu precipitation or deposition from the bulk solder and Cu diffusion from grain boundary at interface. Although the net increase in IMC thickness contributed predominantly by deposition kinetics is greater for air cooling than in furnace cooling from the start temperature of \(300\,^\circ \hbox {C}\) for the first 20 min, the former solidifies before 30 min and the latter stays in liquid state for 1 h due to slower cooling rate and attains a bigger IMC of size about 14.5 \(\upmu \)m. In context of Sn–3.5Ag solders subjected to air cooling from 275 \(^\circ \)C, the presence of Ag contributes to the increment in overall IMC thickness during the cooling period. For the improvement in solder joints reliability, faster cooling rate and limiting the Ag content can be employed as the materials design and processing parameters.


  1. 1.
    K.H. Prakash, T. Sritharan, Interface reaction between copper and molten tin-lead solders. Acta Mater. 49(13), 2481–2489 (2001)CrossRefGoogle Scholar
  2. 2.
    H. Xiaowu, X. Tao, X. Jiang, Y. Li, Y. Liu, Z. Min, Effects of post-reflow cooling rate and thermal aging on growth behavior of interfacial intermetallic compound between SAC305 solder and Cu substrate. Appl. Phys. A 122(4), 278 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    T. Ventura, S. Terzi, M. Rappaz, A.K. Dahle, Effects of solidification kinetics on microstructure formation in binary Sn–Cu solder alloys. Acta Mater. 59(4), 1651–1658 (2011)CrossRefGoogle Scholar
  4. 4.
    H.-Y. Hsiao, C.-M. Liu, H. Lin, T.-C. Liu, L. Chia-Ling, Y.-S. Huang, K.N.T. Chih Chen, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 336(6084), 1007–1010 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A. Kunwar, H. Ma, H. Ma, J. Sun, N. Zhao, M. Huang, On the increase of intermetallic compounds thickness at the cold side in liquid Sn and SnAg solders under thermal gradient. Mater. Lett. 172, 211–215 (2016)CrossRefGoogle Scholar
  6. 6.
    Y.C. Chan, S.H. Fan, J.K.L. Lai, The effect of cooling rate on the growth of Cu–Sn intermetallics in annealed PBGA solder joints. J. Electron. Packag. 125(1), 153 (2003)CrossRefGoogle Scholar
  7. 7.
    H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, L. Wang, In-situ study on growth behavior of \(\text{ Ag }_3\text{ Sn }\) in Sn3.5Ag/Cu soldering reaction by synchrotron radiation real-time imaging technology. J. Alloys Compd. 537, 286–290 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Qu, H.T. Ma, H.J. Zhao, A. Kunwar, N. Zhao, In situ study on growth behavior of interfacial bubbles and its effect on interfacial reaction during a soldering process. Appl. Surf. Sci. 305, 133–138 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M.L. Huang, F. Yang, N. Zhao, Y.C. Yang, Synchrotron radiation real-time in situ study on dissolution and precipitation of \(\text{ Ag }_3\text{ Sn }\) plates in sub-50 \(\upmu \)m Sn–Ag–Cu solder bumps. J. Alloys Compd. 602, 281–284 (2014)CrossRefGoogle Scholar
  10. 10.
    M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, S.A. Belyakov,H. Yasuda, K. Nogita, Effect of Ni on the formation and growthof primary Cu6Sn5 intermetallics in Sn–0.7 wt.% Cu solder pasteson cu substrates during the soldering process. J.Electron. Mater. 45(1), 154–163 (2015)Google Scholar
  11. 11.
    M.A.A. Mohd Salleh, S.D. McDonald, H. Yasuda, A. Sugiyama, K. Nogita, Rapid \(\text{ Cu }_6\text{ Sn }_5\) growth at liquid Sn/solid Cu interfaces. Scripta Mater. 100, 17–20 (2015).Google Scholar
  12. 12.
    A. Kunwar, H. Ma, J. Sun, S. Li, J. Liu, Modeling the diffusion-driven growth of a pre-existing gas bubble in molten tin. Met. Mater. Int. 21(5), 962–970 (2015)CrossRefGoogle Scholar
  13. 13.
    M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, H. Yasuda, K. Nogita, Suppression of \(\text{ Cu }_6\text{ Sn }_5\) in \(\text{ TiO }_2\) reinforced solder joints after multiple reflow cycles. Mater. Des. 108, 418–428 (2016)Google Scholar
  14. 14.
    H. Xie, B. Deng, G. Du, Y. Fu, Y. He, H. Guo, G. Peng, Y. Xue, G. Zhou, Y. Ren, Y. Wang, R. Chen, Y. Tong, T. Xiao, X-ray biomedical imaging beamline at SSRF. J. Instrum. 8(08), C08003 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Cheung, N.S. Santos, J.M.V. Quaresma, G.S. Dulikravich, A. Garcia, Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster. Int. J. Heat Mass Transf. 52(1–2), 451–459 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    T. Gancarz, W. Gasior, H. Henein, Physicochemical properties of Sb, Sn, Zn, and Sb–Sn system. Int. J. Thermophys. 34(2), 250–266 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    T. Gancarz, Z. Moser, W. Gasior, J. Pstruś, H. Henein, A comparison of surface tension, viscosity, and density of Sn and SnAg alloys using different measurement techniques. Int. J. Thermophys. 32, 1210–1233 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    F. Meydaneri, M. Gündüz, M. Özdemir, B. Saatçi, Determination of thermal conductivities of solid and liquid phases for rich-Sn compositions of Sn–Mg alloy. Met. Mater. Int. 18(1), 77–85 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandié, MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009)CrossRefGoogle Scholar
  20. 20.
    M.R. Tonks, D. Gaston, P.C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics phase field simulations. Comput. Mater. Sci. 51(1), 20–29 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Kunwar, H. Ma, H. Ma, B. Guo, Z. Meng, N. Zhao, M. Huang, On the thickness of \(\text{ Cu }_6\text{ Sn }_5\) compound at the anode of Cu/liquid Sn/Cu joints undergoing electromigration. J. Mater. Sci.: Mater. Electron. 27, 7699–7706 (2016)Google Scholar
  22. 22.
    A. Kunwar, H. Ma, M. Qi, J. Sun, L. Qu, B. Guo, N. Zhao, Y. Wang, H. Ma. Positive feedback on imposed thermal gradient by interfacial bubbles in Cu/liquid Sn–3.5Ag/Cu joints, in 17th International Conference on Electronic Packaging Technology (IEEE, Wuhan, 2016), pp. 608–611Google Scholar
  23. 23.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Yang, Y. Cao, S. Joo, H. Chen, X. Ma, M. Li, \(\text{ Cu }_6\text{ Sn }_5\) precipitation during Sn-based solder/Cu joint solidification and its effects on the growth of interfacial intermetallic compounds. J. Alloys Compd. 582, 688–695 (2014)CrossRefGoogle Scholar
  25. 25.
    H.-T. Ma, J. Wang, L. Qu, N. Zhao, A. Kunwar, A study on the physical properties and interfacial reactions with Cu substrate of rapidly solidified Sn–3.5Ag lead-free solder. J. Electron. Mater. 42(8), 2686–2695 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Kisasoz, S. Gurel, A. Karaaslan, Effects of annealing time and cooling rate on precipitations in duplex stainless steel. Met. Sci. Heat Treat. 57(1), 8–11 (2016)Google Scholar
  27. 27.
    M. Schaefer, R.A. Fournelle, J. Liang, Theory for intermetallic phase growth between cu and liquid Sn–Pb solder based on grain boundary diffusion control. J. Electron. Mater. 27(11), 1167–1176 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    K.N. Tu, A.M. Gusak, I. Sobchenko, Linear rate of grain growth in thin films during deposition. Phys. Rev. B 67, 245408(1–5) (2003)ADSGoogle Scholar
  29. 29.
    X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, L. Wang, The adsorption of Ag\(_3\)Sn nano-particles on Cu–Sn intermetallic compounds of Sn–3Ag–0.5Cu/Cu during soldering. J. Alloys Compd. 492(1–2), 433–438 (2010)CrossRefGoogle Scholar
  30. 30.
    D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, The formation of nano-Ag\(_3\)Sn particles on the intermetallic compounds during wetting reaction. J. Alloys Compd. 389(1–2), 153–158 (2005)CrossRefGoogle Scholar
  31. 31.
    X.C. Xie, X.C. Zhao, Y. Liu, J.W. Cheng, B. Zheng, Y. Gu, Effect of Ag addition on growth of the interfacial intermetallic compounds between Sn–0.7Cu solder and Cu substrate. Mater. Sci. Forum 815, 129–134 (2015)CrossRefGoogle Scholar
  32. 32.
    M.L. Huang, F. Yang, N. Zhao, Thermomigration-induced asymmetrical precipitation of Ag\(_3\)Sn plates in micro-scale Cu/Sn3.5Ag/Cu interconnects. Mater. Des. 89, 116–120 (2016)Google Scholar
  33. 33.
    H.T. Lee, Y.F. Chen, Evolution of Ag\(_3\)Sn intermetallic compounds during solidification of eutectic Sn–3.5Ag solder. J. Alloys Compd. 509(5), 2510–2517 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    L. Sun, L. Zhang, X. Le, S.-J. Zhong, J. Ma, L. Bao, Effect of nano-Al addition on properties and microstructure of low-Ag content Sn1Ag0.5Cu solders. J. Mater. Sci.: Mater. Electron. 27(7), 7665–7673 (2016)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haoran Ma
    • 1
  • Anil Kunwar
    • 2
  • Bingfeng Guo
    • 1
  • Junhao Sun
    • 1
  • Chengrong Jiang
    • 1
  • Yunpeng Wang
    • 1
  • Xueguan Song
    • 2
  • Ning Zhao
    • 1
  • Haitao Ma
    • 1
  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Mechanical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations