Applied Physics A

, 122:950 | Cite as

Development of a translation stage for in situ noninvasive analysis and high-resolution imaging

  • David StrivayEmail author
  • Mathieu Clar
  • Said Rakkaa
  • Francois-Philippe Hocquet
  • Catherine Defeyt
Part of the following topical collections:
  1. Innovation in Art Research and Technology


Noninvasive imaging techniques and analytical instrumentation for cultural heritage object studies have undergone a tremendous development over the last years. Many new miniature and/or handheld systems have been developed and optimized. Nonetheless, these instruments are usually used with a tripod or a manual position system. This is very time consuming when performing point analysis or 2D scanning of a surface. The Centre Européen d’Archéométrie has built a translation system made of pluggable rails of 1 m long with a maximum length and height of 3 m. Three motors embedded in the system allow the platform to be moved along these axis, toward and backward from the sample. The rails hold a displacement system, providing a continuous movement. Any position can be reached with a reproducibility of 0.1 mm. The displacements are controlled by an Ethernet connection through a laptop computer running a multiplatform custom-made software written in JAVA. This software allows a complete control over the positioning using a simple, unique, and concise interface. Automatic scanning can be performed over a large surface of 3 m on 3 m. The Ethernet wires provide also the power for the different motors and, if necessary, the detection head. The platform has been originally designed for a XRF detection head (with its full power alimentation) but now can accommodate many different systems like IR reflectography, digital camera, hyperspectral camera, and Raman probes. The positioning system can be modified to combine the acquisition software of the imaging or analytical techniques and the positioning software.


Hyperspectral Imaging Detection Head Ethernet Connection Cultural Heritage Object Iron Oxide Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. West, A. Ellis, P. Potts, C. Streli, C. Vanhoof, D. Wegrzynek, P. Wobrauschek, J. Anal. At. Spectrom. 28, 1544 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Blonski, C. Appoloni, Appl. Radiat. Isot. 89, 47 (2014)CrossRefGoogle Scholar
  3. 3.
    F.-P. Hocquet, H.P. Garnir, A. Marchal, M. Clar, C. Oger, D. Strivay, X-ray Spectrom. 37(4), 304 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Migliori, P. Bonanni, P. Carraresi, N. Grassia, P.A. Mando, X-ray Spectrom. 40(2), 107 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Bronk, S. Rohrs, A. Bjeoumikhov, N. Langhoff, J. Schmalz, R. Wedell, H.E. Gorny, A. Herold, U. Waldschlager, J. Analyt. Chem. 371, 307 (2001)Google Scholar
  6. 6.
    K. Trentelman, M. Bouchard, M. Ganio, C. Namowicz, C. Schmidt Patterson, M. Walton, X-ray Spectrom. 39(3), 159 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Deneckere, F.-P. Hocquet, A. Born, P. Klein, S. Rakkaa, S. Lycke, K. De Langhe, M. Martens, D. Strivay, P. Vandenabeele, L. Moens, J. Raman Spectrosc. 41(11), 1500 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    F.-P. Hocquet, H. Calvo del Castillo, A. Xicotencatl, C. Bourgeois, C. Oger, A. Marchal, M. Clar, S. Rakkaa, E. Micha, D. Strivay, Analyt. Bioanalyt. Chem. 399(9), 3109 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Alfeld, K. Janssens, J. Dik, J. Anal. At. Spectrom. 26, 899 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Alfeld, J. Broekaert, Spectrochim. Acta Part B 88, 211 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    D. Saunders, J. Cupitt, J. Padfield, in Digital Heritage: Applying Digital Imaging to Cultural Heritage, ed. by L. MacDonald (Butterworth-Heinemann, Burlington, 2006), pp. 521–548Google Scholar
  12. 12.
    A. Ribés Cortés, Analyse multispectrale et reconstruction de la réflectance spectrale de tableaux de maître. Ph.D. Dissertation, Ecole Nationale Supérieure des Télécommunications, Paris (2003)Google Scholar
  13. 13.
    H. Liang, Appl. Phys. A Mater. Sci. Process. 106(2), 309 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    F.B. Ferreira, Digitalizacao Hiperespectral de Pinturas e Obras de Arte, Ph.D. Dissertation (Universidade da Beira Interior, Covilha, 2010)Google Scholar
  15. 15.
    P.D. Pinto, Colorimetria hiperespectral de pinturas artsticas Ph.D. Dissertation, Universidade do Minho, Braga (2010).
  16. 16.
    M. Gargano, D. Bertani, E Conserv. Mag. 25(1), 53 (2013)Google Scholar
  17. 17.
    D. Bertani, L. Consolandi, in Digital Heritage: Applying Digital Imaging to Cultural Heritage, ed. by L. MacDonald (Butterworth-Heinemann, Burlington, 2006), pp. 211–238Google Scholar
  18. 18.
    A. Cosentino, E Conserv. Mag. 25(1), 64 (2013)Google Scholar
  19. 19.
    V.A. Solé, E. Papillon, M. Cotte, Ph Walter, J. Susini, Spectrochim. Acta Part B 62(1), 63 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Spectroscopie Atomique et Nucléaire, ArchéométrieUniversité de LiègeLiègeBelgium
  2. 2.Centre Européen d’archéométrieUniversité de LiègeLiègeBelgium

Personalised recommendations