Applied Physics A

, 122:930 | Cite as

Electric field-enhanced hydrogenation

  • Lihui SongEmail author


From the literature, it is reported that electric field can enhance the diffusivity of charged hydrogen species in crystalline silicon. Nevertheless, little research has focused on investigating the effect of electric field on influencing the hydrogen-defect bonding processes. In this paper, we monitored the performance of hydrogen passivation under the varied electric field. It was found that electric field can enhance the extent of hydrogenation to certain defects, which was attributed to the rapid spread of charged hydrogen species to localized defects under the electric field. The increase in photoluminescence response and effective lifetime (at injection level 1 × 1015 cm−3) both confirmed a better hydrogenation under the appropriate electric field. The outcome of deep level transient spectroscopy further revealed a reduction in defect density and a shift of defect energy level with increasing electric field.


Thermal Annealing Defect Density Deep Level Transient Spectroscopy Silicon Bulk Injection Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Hangzhou Dianzi University for the funding ZX150204307002/016 to support this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C.H. Seager, D.S. Ginley, Studies of the hydrogen passivation of silicon grain boundaries. J. Appl. Phys. 52(2), 1050–1055 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    J.L. Benton et al., Hydrogen passivation of point defects in silicon. Appl. Phys. Lett. 36(8), 670–671 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    A. Descoeudres et al., Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment. Appl. Phys. Lett. 99(12), 123506 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    R. Lüdemann, Hydrogen passivation of multicrystalline silicon solar cells. Mater. Sci. Eng. B 58(1–2), 86–90 (1999)CrossRefGoogle Scholar
  5. 5.
    C. Dubé, J.I. Hanoka, Hydrogen passivation of dislocations in silicon. Appl. Phys. Lett. 45(10), 1135–1137 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    M. Kouketsu, S. Isomae, Hydrogen passivation of iron-related hole traps in silicon. J. Appl. Phys. 80(3), 1485–1487 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    G.W. Trucks et al., Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65(4), 504–507 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    N.M. Johnson, M.D. Moyer, Absence of oxygen diffusion during hydrogen passivation of shallow-acceptor impurities in single-crystal silicon. Appl. Phys. Lett. 46(8), 787–789 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    C.H. Seager, D.S. Ginley, Studies of the hydrogen passivation of silicon grain boundaries. J. Appl. Phys. 52:2(2), 1050–1055 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    E.M. Lawson, S.J. Pearton, Hydrogen passivation of laser-induced acceptor defects in p-type silicon. Phys. Stat. Solidi 72(2), K155–K158 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    V. Yelundur et al., Al-enhanced PECVD SiNx induced hydrogen passivation in string ribbon silicon. in Conference Record of the IEEE Photovoltaic Specialists Conference (2001)Google Scholar
  12. 12.
    M. Stutzmann et al., Lattice relaxation due to hydrogen passivation in boron-doped silicon. Appl. Phys. Lett. 52(20), 1667–1669 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    C. Herring, N.M. Johnson, C.G. Van de Walle, Energy levels of isolated interstitial hydrogen in silicon. Phys. Rev. B 64(12), 125209-1–125209-27 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    S. Estreicher, Equilibrium sites and electronic structure of interstitial hydrogen in Si. Phys. Rev. B Condens. Matter 36, 9122 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    L. Song, Laser Processing to Improve the Quality of Low Cost Silicon Wafers (Scholar’s Press, Cambridge, 2015)Google Scholar
  16. 16.
    L. Song, L. Mai, S. Wenham, Laser induced localised hydrogen passivation. Sol. Energy 122, 341–346 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    B.J. Hallam et al., Hydrogen passivation of B–O defects in Czochralski silicon. Energy Proc. 38, 561–570 (2013)CrossRefGoogle Scholar
  18. 18.
    M.I. Bertoni et al., Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Prog. Photovolt. Res. Appl. 19(2), 187–191 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    L. Song et al., Laser enhanced hydrogen passivation of silicon wafers. Int. J. Photoenergy (2015). doi: 10.1155/2015/193892 Google Scholar
  20. 20.
    L. Song, A. Wenham, S. Wenham, Low temperature diffusion and its impact on hydrogenation. Sol. Energy Mater. Sol. Cells 149, 221–225 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Song, J. Wilson, J. Lee, Laser recrystallization for efficient multi-crystalline silicon solar cell. J. Phys. D Appl. Phys. 49(31), 315601 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Y.L. Huang et al., Dependence of hydrogen diffusion on the electric field in p-type silicon. J. Electrochem. Soc. 151(9), G564–G567 (2004)CrossRefGoogle Scholar
  23. 23.
    M.S. Janson et al., Electric-field-assisted migration and accumulation of hydrogen in silicon carbide. Phys. Rev. B 61(11), 7195–7198 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    T. Trupke et al., Photoluminescence imaging of silicon wafers. Appl. Phys. Lett. 89(4), 928–931 (2006)CrossRefGoogle Scholar
  25. 25.
    Y. Ohshita et al., Study of silicon nitride film for rear surface passivation. in 28th European Photovoltaic Solar Energy Conference and Exhibition (2013)Google Scholar
  26. 26.
    C. Herring, N.M. Johnson, C.G. Van de Walle, Energy levels of isolated interstitial hydrogen in silicon. Phys. Rev. B 64(12), 125209 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    C.G.V.D. Walle et al., Theory of hydrogen diffusion and reactions in crystalline silicon. Phys. Rev. B Condens. Matter 39(26), 2761–2764 (1989)Google Scholar
  28. 28.
    W. Beyer, Diffusion and effusion of hydrogen in hydrogenated amorphous and microcrystalline silicon. Sol. Energy Mater. Sol. Cells 78(1–4), 235–267 (2003)CrossRefGoogle Scholar
  29. 29.
    D. Ballutaud et al., Hydrogen diffusion and trapping in microcrystalline silicon. Solid State Phenom. 69–70(8), 571–576 (1999)CrossRefGoogle Scholar
  30. 30.
    R.H. Doremus, Diffusion of hydrogen in silicon: diffusion-reaction model. Mater. Res. Innov. 4(1), 49–59 (2000)CrossRefGoogle Scholar
  31. 31.
    N.M. Johnson, C. Herring, D.J. Chadi, Hydrogen diffusion and dopant passivation in single-crystal silicon. in 18th International Conference on the Physics of Semiconductors, vol. 2, ed. by O. Engström (World Scientific, Singapore, 1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations