Applied Physics A

, 122:920 | Cite as

Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

  • S. SellaiyanEmail author
  • A. Uedono
  • K. Sivaji
  • S. Janet Priscilla
  • J. Sivasankari
  • T. Selvalakshmi


Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.


Oxygen Vacancy Positron Annihilation Positron Lifetime Cluster Vacancy Vacancy Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Dr. Shanmugavel Chinnathambi, for PL measurement at the National Institute for Materials Science (NIMS), Japan.


  1. 1.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr., Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  2. 2.
    M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  3. 3.
    J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, J. Phys. Chem. B 108, 8106 (2004)CrossRefGoogle Scholar
  4. 4.
    D.F. Watson, G.J. Meyer, Annu. Rev. Phys. Chem. 56, 119 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. Shukla, R. Agrawal, H.J. Cho, S. Seal, L. Ludwig, C.J. Parish, Appl. Phys. 97, 054307 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Subramania, G.V. Kumar, A.S. Priya, T. Vasudevan, Nanotechnology 18(22), 225601 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J.Y. Kim, H.S. Jung, K.S. Hong, J. Am. Ceram. Soc. 88(3), 784–787 (2005)CrossRefGoogle Scholar
  8. 8.
    M.S. El-Shall, W. Slack, W. Vann, D. Kane, D. Hanley, J. Phys. Chem. 98(12), 3067–3070 (1994)CrossRefGoogle Scholar
  9. 9.
    Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, Y. Qian, Chem. Mater. 13(2), 435–440 (2001)CrossRefGoogle Scholar
  10. 10.
    K.P. McKenna, D. Koller, A. Sternig, N. Siedl, N. Govind, P.V. Sushko, O. Diwald, ACS Nano 5(4), 3003–3009 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Phy. Rev. B 65, 121201–121204 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    R.J.D. Tilley, Defects in Solids (Wiley, New Jersey, 2008)CrossRefGoogle Scholar
  13. 13.
    E. Scorza, U. Birkenheuer, C. Pisani, J. Chem. Phys. 107(22), 9645–9658 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Powder Technol. 249, 456–462 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Stankic, M. Sterrer, J. Bernardi, O. Diwald, E. Knözinger, Nano Lett. 5, 1889 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    B.L. Abrams, P.H. Holloway, Chem. Rev. 104, 5783 (2005)CrossRefGoogle Scholar
  17. 17.
    P.B. Devaraja, D.N. Avadhani, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, B.D. Prasad, J. Radiat. Res. Appl. Sci. 8(3), 362–373 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rödl, F. Bechstedt, M. Scheffler, C.G. Van de Walle, Phys. Rev. Lett. 108, 126404 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    P.V. Pikhitsa, C. Kim, S. Chae, S. Shin, S. Jung, M. Kitaura, S.I. Kimura, K. Fukui, M. Choi, Appl. Phys. Lett. 106, 183106 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Xu, A.P. Mills Jr., A. Ueda, D.O. Henderson, R. Suzuki, S. Ishibashi, Phys. Rev. Lett. 83(22), 4586–4589 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    M.C. Wu, C.M. Truong, D.W. Goodman, Phys. Rev. B 46, 12688 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    X. Lu, X. Xu, N. Wang, Q. Zhang, J. Phys. Chem. B 103, 3373 (1999)CrossRefGoogle Scholar
  23. 23.
    I. Balint, K. Aika, Appl. Surf. Sci. 173, 296–306 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    O. Runevall, N. Sandberg, Comput. Mater. Sci. 60, 53–58 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Sivasankari, S. Selvakumar, K. Sivaji, S. Sankar, J. Alloys Compd. 616, 51–57 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Saito, T. Hyodo, Radiat. Phys. Chem. 68, 431 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M.A. Monge, R. Pareja, R. Gonzalez, Y. Chen, Phys. Rev. B 55, 243 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    N.H. Hong, J. Sakai, N. Poirot, V. Brizé, Phys. Rev. B 73, 132404 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    T.E.M. Staab, R. Krause-Rehberg, B. Kieback, J. Mater. Sci. 34(16), 3833–3851 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    D.D. Wang, Z.Q. Chen, C.Y. Li, X.F. Li, C.Y. Cao, Z. Tang, Phys. B 407, 2665–2669 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M. Chandrasekhar, H. Nagabhushana, S.C. Sharma, K.H. Sudheerkumar, N. Dhananjaya, D.V. Sunitha, C. Shivakumara, B.M. Nagabhushana, J. Alloys Compd. 584(25), 417–424 (2014)CrossRefGoogle Scholar
  32. 32.
    N.A. Richter, F. Stavale, S.V. Levchenko, N. Nilius, H.-J. Freund, M. Scheffler, Phys. Rev. B Condens. Matter 91, 195305 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    A. Karbowski, K. Fedus, J. Patyk, L. Bujak, K. Służewski, G. Karwasz, Nukleonika 58, 189–194 (2013)Google Scholar
  34. 34.
    D. Wang, Z.Q. Chen, D.D. Wang, N. Qi, J. Gong, C.Y. Cao, Z. Tang, J. Appl. Phys. 107, 023524 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S.J. Tao, J. Chem. Phys 56, 5499–5510 (1972)ADSCrossRefGoogle Scholar
  36. 36.
    M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51–58 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    H. Nakanishi, S.J. Wang, Y.C. Jean, in Positron Annihilation Studies of Fluids, ed. by S.C. Sharma (World Scientific, Singapore, 1988), p. 292Google Scholar
  38. 38.
    L. Xu, F. Gu, J. Su, Y. Chen, X. Li, X. Wang, J. Alloys Compd. 509, 2942–2947 (2011)CrossRefGoogle Scholar
  39. 39.
    Y.-H. Lin, M. Li, C.-W. Nan, Z. Zhang, J. Am. Ceram. Soc. 90, 2991–2994 (2007)Google Scholar
  40. 40.
    Q. Wang, N. Holzwarth, Phys. Rev. B Condens. Matter 41, 3211 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    B. Choudhury, P. Basyach, A. Choudhury, J. Lumin. 149, 280–286 (2014)CrossRefGoogle Scholar
  42. 42.
    M.L. Bailly, G. Costentin, H. Lauron-Pernot, J.M. Krafft, M. Che, J. Phys. Chem. B 109, 2404 (2005)CrossRefGoogle Scholar
  43. 43.
    J. Lü, K. Huang, J. Zhu, X. Chen, X. Song, Z. Sun, Phys. B Matter 405(15), 3167–3171 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    C. Wu, Q. Huang, J. Lumin. 130(11), 2136–2141 (2010)CrossRefGoogle Scholar
  45. 45.
    L. Xu, X. Li, J. Yuan, Superlattices Microstruct. 44(3), 276–281 (2008)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    M.K. Gupta, N. Sinha, B.K. Singh, B. Kumar, Mater. Lett. 64(16), 1825–1828 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, New J. Phys. 11(6), 063009 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    R. González, Y. Chen, Phys. Rev. B Condens. Matter 35(15), 8202 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Sellaiyan
    • 1
    Email author
  • A. Uedono
    • 1
  • K. Sivaji
    • 2
  • S. Janet Priscilla
    • 2
  • J. Sivasankari
    • 3
  • T. Selvalakshmi
    • 4
  1. 1.Division of Applied PhysicsUniversity of TsukubaTsukubaJapan
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  3. 3.Department of PhysicsAnna UniversityChennaiIndia
  4. 4.Nanomaterials Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations