Advertisement

Applied Physics A

, 122:820 | Cite as

Metal alloys, matrix inclusions and manufacturing techniques of Moinhos de Golas collection (North Portugal): a study by micro-EDXRF, SEM–EDS, optical microscopy and X-ray radiography

  • Joana Loureiro
  • Elin Figueiredo
  • Rui J. C. Silva
  • M. Fátima Araújo
  • João Fonte
  • Ana M. S. Bettencourt
Article
Part of the following topical collections:
  1. Sustainable solutions for restoration and conservation of cultural heritage

Abstract

A collection of 35 metallic artefacts comprising various typologies, some of which can be attributed to the Bronze Age and others to later periods, were studied to provide detailed information on elemental composition, manufacturing techniques and preservation state. Elemental analysis by micro-EDXRF and SEM–EDS was performed to investigate the use of different alloys and to study the presence of microstructural heterogeneities, as inclusions. X-ray radiography, optical microscopy and SEM–EDS were used to investigate manufacturing techniques and degradation features. Results showed that most of the artefacts were produced in a binary bronze alloy (Cu–Sn) with 10–15 wt% Sn and a low concentration of impurities. Other artefacts were produced in copper or in brass, the latest with varying contents of Zn, Sn and Pb. A variety of inclusions in the metal matrices were also found, some related to specific types of alloys, as (Cu–Ni)S2 in coppers, or ZnS in brasses. Microstructural observations revealed that the majority of the artefacts were subjected to cycles of thermomechanical processing after casting, being evident that among some artefacts different parts were subjected to distinct treatments. The radiographic images revealed structural heterogeneities related to local corrosion processes and fissures that seem to have developed in wear-tension zones, as in the handle of some daggers. Radiographic images were also useful to detect the use of different materials in one particular brass artefact, revealing the presence of a possible Cu–Sn solder.

Keywords

Slip Band Energy Dispersive Spectrometer Annealing Twin Metallic Artefact Energy Dispersive Spectrometer Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Fundação para a Ciência e Tecnologia under the project UID/CTM/50025/2013 to CENIMAT/I3N. C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project. EF acknowledges FCT for the grant SFRH/BPD/97360/2013. JF acknowledge FCT for the grant SFRH/BD/65143/2009. Part of this project has been done in the framework of the FCT project ENARDAS (PTDC/HISARQ/112983/2009).

References

  1. 1.
    P.T. Craddock, Early Metal Mining and Production (The University Press, Cambridge, 1995)zbMATHGoogle Scholar
  2. 2.
    M.L. Wayman, Mater. Charact. 45, 259 (2000)CrossRefGoogle Scholar
  3. 3.
    J. Fonte, A.M.S. Bettencourt, E. Figueiredo, Estudos do Quaternário 9, 17 (2013)Google Scholar
  4. 4.
    R. Vilaça, Aspectos do povoamento da Beira Interior (Centro e Sul) nos Finais da Idade do Bronze (Trabalhos de Arqueologia 9—Instituto Português do Património Arquitectónico e Arqueológico, Lisboa, 1995)Google Scholar
  5. 5.
    A.M.S. Bettencourt, in Existe um Idade do Bronze Atlântico?, ed. by S.O. Jorge (Instituto Português de Arqueologia, Lisboa, 1998), p. 18Google Scholar
  6. 6.
    J. Castro Nunes, F. Bragança Gil, J.C. Senna-Martinez, F. Guerra, Artefacto metálico recolhido na Casa da Orca da Cunha Baica, concelho de Mangualde. Actas do I Colóquio Arqueológico de Viseu (Governo Civil do Distrito de Viseu, Viseu, 1989), p. 61Google Scholar
  7. 7.
    J. Loureiro, E. Figueiredo, R.J.C. Silva, M.F. Araújo, J. Fonte, A.M.S. Bettencourt, Estudos do Quaternário 11, 59 (2014)Google Scholar
  8. 8.
    I. Montero-Ruíz, A. Perea, in Metals and Mines: Studies in Archaeometallurgy, ed. by S. La Niece, D. Hook, P. Craddock (Archetype Publications, London, 2007), p. 136Google Scholar
  9. 9.
    P. Valério, M.F. Araújo, A. Canha, Nucl. Instrum. Methods B 263, 477 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    E. Figueiredo, R.J.C. Silva, J.C. Senna-Martinez, M.F. Araújo, F.M. Braz Fernandes, L.J.I. Vaz, J. Archaeol. Sci. 37, 1623 (2010)CrossRefGoogle Scholar
  11. 11.
    E. Figueiredo, P. Valério, M.F. Araújo, R.J.C. Silva, A.M. Monge Soares, X-Ray Spectrom. 40, 325 (2011)CrossRefGoogle Scholar
  12. 12.
    E. Figueiredo, M.F. Araújo, R.J.C. Silva, R. Vilaça, Nucl. Instrum. Methods B 296, 26 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    N. Schiavon, A. Celauro, M. Manso, A. Brunetti, F. Susanna, Appl. Phys. A 113, 865 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A. Celauro, N. Schiavon, A. Brunetti, L.-I. Mandredi, F. Susanna, A. Dekayir, V. Grazini, D. Pargny, D. Ferro, Appl. Phys. A 114, 711 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    P. Valério, R.J.C. Silva, A.M.M. Soares, M.F. Araújo, A.P. Gonçalves, R.M. Soares, Nucl. Instrum. Methods B 358, 117 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    P.T. Craddock, N.D. Meeks, Archaeometry 29, 187 (1987)CrossRefGoogle Scholar
  17. 17.
    C. Carvalho, F.S. Lemos, C. Meireles, Conjunto Mineiro Romano em Montalegre. Actas das XVI Jornadas sobre a Função Social do Museu (Câmara Municipal e Ecomuseu do Barroso, Montalegre, 2006), p. 147Google Scholar
  18. 18.
    C.P. Thornton, C.E. Ehlers, Inst. Archaeo-Metall. Stud. 23, 3 (2003)Google Scholar
  19. 19.
    P.T. Craddock, in 2000 Years of Zinc and Brass, ed. by P.T. Craddock (British Museum Occasional Paper 50, British Museum, London, 1990), p. 1Google Scholar
  20. 20.
    T. Rehren, M. Martinón-Torres, in Archaeology, History and science: Integrating approaches to ancient materials, ed. by M. Martinón-Torres, T. Rehren (Left Coast Press, Walnut Creek, 2008), p. 167Google Scholar
  21. 21.
    D. Dungworth, J. Archaeol. Sci. 24, 901 (1997)CrossRefGoogle Scholar
  22. 22.
    J. Bayley, in 2000 Years of Zinc and Brass, ed. by P.T. Craddock (British Museum Occasional Paper 50, British Museum, London, 1990), p. 7Google Scholar
  23. 23.
    H. Bronk, S. Röhrs, A. Bjeoumikhov, N. Langhoff, J. Schmalz, R. Wedell, H.E. Gorny, A. Herold, U. Waldschläger, Fresenius J. Anal. Chem. 371, 307 (2001)CrossRefGoogle Scholar
  24. 24.
    E. Figueiredo, R.J.C. Silva, M.F. Araújo, J.C. Senna-Martinez, Microchim. Acta 168, 283 (2010)CrossRefGoogle Scholar
  25. 25.
    E. Figueiredo, R.J.C. Silva, M.F. Araújo, F.M.B. Fernandes, Microsc. Microanal. 19, 1248 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Scott, Metallography and Microstructure of Ancient and Historic Metals (The Getty Conservation Institute & Archetype Books, Los Angeles, 1991), p. 69Google Scholar
  27. 27.
    P.C. Gutiérrez Neira, A. Zucchiatti, I. Montero-Ruiz, R. Vilaça, C. Bottanini, M. Gener, A. Climent-Font, Nucl. Instrum. Methods B 269, 3082 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    N. Kallithrakas-Kontos, A.A. Katsanos, J. Touratsoglu, Nucl. Instrum. Methods B 171, 342 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    A. Giumlia-Mair, E.J. Keall, A.N. Shugar, S. Stock, J. Archaeol. Sci. 29, 195 (2002)CrossRefGoogle Scholar
  30. 30.
    E. Figueiredo, J.C. Senna-Martinez, R.J.C. Silva, M.F. Araújo, Mater. Manuf. Process. 24, 949 (2009)CrossRefGoogle Scholar
  31. 31.
    L. Robbiola, J.M. Blengino, C. Fiaud, Corros. Sci. 12, 2083 (1998)CrossRefGoogle Scholar
  32. 32.
    H.H. Coghlan, Notes on the Metallurgy of Copper and Bronze in the Old World (The University Press, Oxford, 1975)Google Scholar
  33. 33.
    H. Maryon, Am. J. Archaeol. 53, 93 (1949)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joana Loureiro
    • 1
  • Elin Figueiredo
    • 2
  • Rui J. C. Silva
    • 2
  • M. Fátima Araújo
    • 3
  • João Fonte
    • 4
    • 5
  • Ana M. S. Bettencourt
    • 5
  1. 1.Departamento de Conservação e Restauro, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
  2. 2.Centro de Investigação em Materiais (CENIMAT/I3N), Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
  3. 3.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  4. 4.Instituto de Ciencias del Patrimonio (Incipit)Consejo Superior de Investigaciones Cientificas (CSIC)Santiago de CompostelaSpain
  5. 5.Laboratório de Paisagens, Património e Território (Lab2PT/UM), Departamento de HistóriaUniversidade do MinhoBragaPortugal

Personalised recommendations