Applied Physics A

, 122:802 | Cite as

Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

  • G. Kenanakis
  • K. C. Vasilopoulos
  • Z. Viskadourakis
  • N.-M. Barkoula
  • S. H. Anastasiadis
  • M. Kafesaki
  • E. N. Economou
  • C. M. Soukoulis
Article

Abstract

Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60–70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

References

  1. 1.
    X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding (Taylor & Francis Group, London, 2009)Google Scholar
  2. 2.
    S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, J. Appl. Polym. Sci. 112, 2073–2086 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Celozzi, R. Araneo, G. Lova, Electromagnetic Shielding (Wiley, New York, 2008)CrossRefGoogle Scholar
  4. 4.
    M. Suchea, I.V. Tudose, G. Tzagkarakis, G. Kenanakis, M. Katharakis, E. Drakakis, E. Koudoumas, Appl. Surf. Sci. 352, 151–154 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A. Ameli, P.U. Jung, C.B. Park, Carbon 60, 379–391 (2013)CrossRefGoogle Scholar
  6. 6.
    J.-M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mat. Sci. Eng. R 74, 211–232 (2013)CrossRefGoogle Scholar
  7. 7.
    M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, Carbon 60, 146–156 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Hornbostel, P. Potschke, D. Kornfeld, J. Kotz, S.J. Roth, Nanostruct. Polym. Nanocompos. 3, 103–107 (2007)Google Scholar
  9. 9.
    P.C.P. Watts, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Nano Lett. 3, 549–553 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Y.L. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Nano Lett. 5, 2131–2134 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, Nanotechnology 23, 455704 (2012)CrossRefGoogle Scholar
  12. 12.
    H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, A.J. Epstein, Appl. Phys. Lett. 84, 589 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M.J. O’Connell, Carbon Nanotubes: Properties and Applications (Taylor and Francis, London, 2006)CrossRefGoogle Scholar
  14. 14.
    G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, J. Mater. Chem. 21, 829–836 (2010)CrossRefGoogle Scholar
  15. 15.
    V. Panwar, J.-O. Park, S.-H. Park, S. Kumar, R.M. Mehra, J. Appl. Polym. Sci. 115, 1306–1314 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Le, Prog. Polym. Sci. 35, 1350–1375 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, J. Mater. Chem. 19, 7098–7105 (2009)CrossRefGoogle Scholar
  18. 18.
    F.M. Uhl, C.A. Wilkie, Polym. Degrad. Stab. 76, 111–122 (2002)CrossRefGoogle Scholar
  19. 19.
    R.K. Goyal, P.A. Jagadale, U.P. Mulik, J. Appl. Polym. Sci. 111, 2071–2077 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36, 638–670 (2001)CrossRefGoogle Scholar
  21. 21.
    W.-P. Wang, C.-Y. Pan, Polymer 45, 3987–3995 (2004)CrossRefGoogle Scholar
  22. 22.
    D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, Z.-M. Li, J. Mater. Chem. 22, 18772–18774 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, ACS Appl. Mater. Interfaces 12, 4712–4724 (2013)CrossRefGoogle Scholar
  24. 24.
    G.A. Gelves, B. Lin, U. Sundararaj, J.A. Haber, Adv. Funct. Mater. 16, 2423–2430 (2006)CrossRefGoogle Scholar
  25. 25.
    M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Comp. Part A 42, 92–97 (2011)CrossRefGoogle Scholar
  26. 26.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, J. Au Kong, Opt. Express 14, 12944–12949 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.L. Thomason, M.A. Vlug, Compos. A 27A, 477–484 (1996)CrossRefGoogle Scholar
  29. 29.
    J.L. Thomason, M.A. Vlug, G. Schipper, H.G.L.T. Krikor, Compos. A 27A, 1075–1084 (1996)CrossRefGoogle Scholar
  30. 30.
    A. Kelly, W.R. Tyson, J. Mech. Phys. Solids 13, 329–350 (1965)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. Kenanakis
    • 1
  • K. C. Vasilopoulos
    • 1
  • Z. Viskadourakis
    • 2
  • N.-M. Barkoula
    • 3
  • S. H. Anastasiadis
    • 1
    • 4
  • M. Kafesaki
    • 1
    • 5
  • E. N. Economou
    • 1
  • C. M. Soukoulis
    • 1
    • 6
  1. 1.Institute of Electronic Structure and LaserFoundation for Research & Technology-HellasHeraklionGreece
  2. 2.Crete Center for Quantum Complexity and NanotechnologyUniversity of CreteHeraklionGreece
  3. 3.Department of Materials EngineeringUniversity of IoanninaIoanninaGreece
  4. 4.Department of ChemistryUniversity of CreteHeraklionGreece
  5. 5.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece
  6. 6.Ames Laboratory, U.S. Department of Energy and Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations