Applied Physics A

, 122:836 | Cite as

Black Germanium fabricated by reactive ion etching

  • Martin SteglichEmail author
  • Thomas Käsebier
  • Ernst-Bernhard Kley
  • Andreas Tünnermann


A reactive ion etching technique for the preparation of statistical “Black Germanium” antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids’ base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis–NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.


Etching Process CHF3 Black Silicon Germanium Oxide Sidewall Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support by the fo+ (Contract No. 03WKCK1D) funding program of the German Federal Ministry of Education and Research.


  1. 1.
    W.H. Southwell, J. Opt. Soc. Am. A 8, 549 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    C. Pacholski, C. Morhard, J. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, R. Brunner, Appl. Opt. 51, 8 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Hobbs, B.D. Macleod, Proc. SPIE 5786(5786), 578640 (2005)Google Scholar
  4. 4.
    Q. Chen, G. Hubbard, P. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Appl. Phys. Lett. 94, 263118 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, A. Tünnermann, Opt. Express 17, 3063 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, J.P. Spatz, Nano Lett. 8, 1429 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, L. Chi, Nano Res. 3, 520 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Frommhold, A.P.G. Robinson, E. Tarte, Microelectron. Eng. 99, 43 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Schulze, M. Damm, M. Helgert, E.-B. Kley, S. Nolte, A. Tünnermann, Opt. Express 20, 1422 (2012)Google Scholar
  10. 10.
    U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, A. Tünnermann, Opt. Express 15, 13108 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Zaidi, D.S. Ruby, J.M. Gee, I.E.E.E. Trans, Electron Devices 48, 1200 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    G.C. Schwartz, J. Vac. Sci. Technol. 16, 410 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, A. Tünnermann, Infrared Phys. Technol. 69, 218 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, P. Ranson, J. Phys. D 38, 3395 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N.M. Maaza, P. Ranson, M. Boufnichel, L.J. Overzet, J. Vac. Sci. Technol. A 24, 1073 (2006)CrossRefGoogle Scholar
  16. 16.
    H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, J. Micromech. Microeng. 5, 115 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, A. Tünnermann, J. Appl. Phys. 116, 173503 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, J. Micromech. Microeng. 6, 14 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    S. Schicho, A. Jaouad, C. Sellmer, D. Morris, V. Aimez, R. Arès, Mater. Lett. 94, 86 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Köhler, Etching in microsystem technology, 1st edn. (Wiley-VCH, Weinheim, 1999)CrossRefGoogle Scholar
  21. 21.
    M. Lindblom, J. Reinspach, O. von Hofsten, M. Bertilson, H.M. Hertz, A. Holmberg, J. Vac. Sci. Technol. B 27, L1 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Okano, Y. Horiike, M. Sekine, Jpn. J. Appl. Phys. 24, 68 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    M. Seel, P.S. Bagus, Phys. Rev. B 23, 5464 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, B. Kley, A. Tünnermann, T. Pertsch, Proc. SPIE 7725(7725), 772505 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision Engineering IOFJenaGermany

Personalised recommendations