Applied Physics A

, 122:756 | Cite as

Fabrication of single-electron devices using dispersed nanoparticles and fitting experimental results to values calculated based on percolation model

  • Masataka MoriyaEmail author
  • Tran Thi Thu Huong
  • Kazuhiko Matsumoto
  • Hiroshi Shimada
  • Yasuo Kimura
  • Ayumi Hirano-Iwata
  • Yoshinao Mizugaki


We calculated the connection probability, P C, between electrodes on the basis of the triangular lattice percolation model for investigating the effect of distance variation between electrodes and the electrode width on fabricated capacitively coupled single-electron transistors. Single-electron devices were fabricated via the dispersion of gold nanoparticles (NPs). The NPs were dispersed via the repeated dropping of an NP solution onto a chip. The experimental results were fitted to the calculated values, and the fitting parameters were compared with the occupation probability, P O, which was estimated for one drop of the NP solution. On the basis of curves of the drain current versus the drain-source voltage (I DV DS) measured at 77 K, the current was suppressed at approximately 0 V.


Gate Voltage Percolation Theory Percolation Model Occupation Probability Coulomb Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank members of our laboratory for critical discussions. This work was partly supported by JSPS KAKENHI Grant Number 15K13999 and by CREST, JST.


  1. 1.
    T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    U. Meirav, M.A. Kastner, S.J. Wind, Phys. Rev. Lett. 65, 771 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    L.J. Geerligs et al., Phys. Rev. Lett. 64, 2691 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    H. Potheir et al., Phys. B 169, 573 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    C.Y. Lin et al., Appl. Phys. Lett. 99, 072105 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Rossi et al., Nano Lett. 14, 3405 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Pekola et al., Rev. Mod. Phys. 85, 1421 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    P. Delsing, D.B. Haviland, Appl. Supercond. 6, 789 (1998)CrossRefGoogle Scholar
  9. 9.
    V. Bubanja, K. Matsumoto, Y. Gotoh, Jpn. J. Appl. Phys. 40, 87 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    T. Bergsten, T. Claeson, P. Delsing, Appl. Phys. Lett. 78, 1264 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    P.S.K. Karre et al., IEEE Sens. J. 8, 797 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Berman et al., J. Vac. Sci. Technol. B 15, 2844 (1997)CrossRefGoogle Scholar
  13. 13.
    K.K. Likharev, IEEE Trans. Magn. 23, 1142 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Azuma et al., Jpn. J. Appl. Phys. 49, 090206 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P.-E. Trudeau et al., J. Chem. Phys. 119, 5267 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    G.J. Dolan, Appl. Phys. Lett. 31, 337 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.The University of Electro-CommunicationsChofuJapan
  2. 2.Tokyo University of TechnologyHachiojiJapan
  3. 3.Tohoku UniversitySendaiJapan

Personalised recommendations