Applied Physics A

, 122:749 | Cite as

Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes

  • M. V. Kharlamova
  • Christian Kramberger
  • Takeshi Saito
  • Hidetsugu Shiozawa
  • Thomas Pichler
Rapid communications
  • 148 Downloads

Abstract

We have synthesized cobaltocene-filled 1.7-nm-mean diameter single-walled carbon nanotubes (SWCNTs) and transformed them into double-walled carbon nanotubes by annealing at temperatures between 500 and 1000 °C for 2 h in vacuum. We analyze the temperature-dependent inner tube growth inside the filled SWCNTs by Raman spectroscopy. The changes in intensity of the Raman peaks of inner tubes with the diameters ranging from 0.832 to 1.321 nm with increasing annealing temperature are traced. It is revealed that the growth temperatures of larger diameter inner tubes are higher than the ones of smaller diameter tubes. A decrease in the diameter of the inner tubes by ~0.4 nm leads to a decrease in the growth temperature by ~200 °C.

Notes

Acknowledgments

This work was supported by the Austrian Science Funds (FWF). The HRTEM images were obtained by A.V. Egorov (Lomonosov Moscow State University).

References

  1. 1.
    M.V. Kharlamova, Prog. Mater Sci. 77, 125 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Endo, M.S. Strano, P.M. Ajayan, Top. Appl. Phys. 111, 13 (2008)CrossRefGoogle Scholar
  3. 3.
    E. Joselevich, H.J. Dai, J. Liu, K. Hata, A.H. Windle, Top. Appl. Phys. 111, 101 (2008)CrossRefGoogle Scholar
  4. 4.
    M.V. Kharlamova, L.V. Yashina, A.A. Volykhov, J.J. Niu, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.I. Belogorokhov, A.A. Eliseev, Eur. Phy. J. B 85, 34 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, Y.D. Tretyakov, Phys. Status Solidi B 249, 2328 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, J. Mater. Sci. 48, 8412 (2013)CrossRefGoogle Scholar
  7. 7.
    M.V. Kharlamova, Appl. Phys. A 111, 725 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, Appl. Phys. A 112, 297 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M.V. Kharlamova, Appl. Phys. A 118, 27 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    E. Borowiak-Palen, M.H. Ruemmeli, T. Gemming, T. Pichler, R.J. Kalenczuk, S.R.P. Silva, Nanotechnology 17, 2415 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.V. Kharlamova, J.J. Niu, J. Exp. Theor. Phys. 115, 485 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M.V. Kharlamova, J.J. Niu, JETP Lett. 95, 314 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    H. Shiozawa, T. Pichler, C. Kramberger, A. Gruneis, M. Knupfer, B. Buchner, V. Zolyomi, J. Koltai, J. Kurti, D. Batchelor, H. Kataura, Phys. Rev. B 77, 153402 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    H. Shiozawa, T. Pichler, C. Kramberger, M. Rummeli, D. Batchelor, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Phys. Rev. Lett. 102, 046804 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Sauer, H. Shiozawa, P. Ayala, G. Ruiz-Soria, X.J. Liu, A. Chernov, S. Krause, K. Yanagi, H. Kataura, T. Pichler, Carbon 59, 237 (2013)CrossRefGoogle Scholar
  18. 18.
    M.V. Kharlamova, M. Sauer, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 7, 1383 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    H. Shiozawa, T. Pichler, A. Gruneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater. 20, 1443 (2008)CrossRefGoogle Scholar
  20. 20.
    M.V. Kharlamova, M. Sauer, T. Saito, S. Krause, X.J. Liu, K. Yanagi, T. Pichler, H. Shiozawa, Phys. Status Solidi B 250, 2575 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.V. Kharlamova, M. Sauer, A.V. Egorov, C. Kramberger, T. Saito, T. Pichler, H. Shiozawa, Phys. Status Solidi B 252, 24852490 (2015)Google Scholar
  22. 22.
    X.J. Liu, H. Kuzmany, T. Saito, T. Pichler, Phys. Status Solidi B 248, 2492 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A. Briones, X.J. Liu, C. Kramberger, T. Saito, T. Pichler, Phys. Status Solidi B 248, 2488 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M.V. Kharlamova, C. Kramberger, T. Saito, H. Shiozawa, T. Pichler, Phys. Status Solidi B 251, 2394 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    T. Saito, S. Ohshima, T. Okazaki, S. Ohmori, M. Yumura, S. Iijima, J. Nanosci. Nanotechnol. 8, 6153 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  27. 27.
    P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77, 241403 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza, R. Saito, Carbon 40, 2043 (2002)CrossRefGoogle Scholar
  29. 29.
    S.D.M. Brown, P. Corio, A. Marucci, M.S. Dresselhaus, M.A. Pimenta, K. Kneipp, Phys. Rev. B 61, R5137 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen, Phys. Rev. Lett. 102, 075501 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    O. Dubay, G. Kresse, Phys. Rev. B 70, 165424 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    V.N. Popov, L. Henrard, Phys. Rev. B 70, 115407 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    V. Jourdain, C. Bichara, Carbon 58, 2 (2013)CrossRefGoogle Scholar
  35. 35.
    G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994)Google Scholar
  36. 36.
    H. Shiozawa, C. Kramberger, R. Pfeiffer, H. Kuzmany, T. Pichler, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Adv. Mater. 22, 3685 (2010)CrossRefGoogle Scholar
  37. 37.
    R.T.K. Baker, Carbon 27, 315 (1989)CrossRefGoogle Scholar
  38. 38.
    C. Bower, O. Zhou, W. Zhu, D.J. Werder, S.H. Jin, Appl. Phys. Lett. 77, 2767 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76, 2367 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    W.H. Chiang, R.M. Sankaran, Diam. Relat. Mater. 18, 946 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    S.P. Patole, H. Kim, J. Choi, Y. Kim, S. Baik, J.B. Yoo, Appl. Phys. Lett. 96, 094101 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    F. Cervantes-Sodi, T.P. McNicholas, J.G. Simmons, J. Liu, G. Csanyi, A.C. Ferrari, S. Curtarolo, ACS Nano 4, 6950 (2010)CrossRefGoogle Scholar
  43. 43.
    N.S. Kim, Y.T. Lee, J.H. Park, H. Ryu, H.J. Lee, S.Y. Choi, J.B. Choo, J. Phys. Chem. B 106, 9286 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. V. Kharlamova
    • 1
  • Christian Kramberger
    • 1
  • Takeshi Saito
    • 2
  • Hidetsugu Shiozawa
    • 1
  • Thomas Pichler
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations