Applied Physics A

, 122:707 | Cite as

“Dry-state” surface-enhanced Raman scattering (SERS): toward non-destructive analysis of dyes on textile fibers

  • Chiara Zaffino
  • Hoan Thanh Ngo
  • Janna Register
  • Silvia Bruni
  • Tuan Vo-Dinh


In the present work, we report the proof of concept of the possibility to identify natural dyes on textiles using surface-enhanced Raman scattering (SERS) detection by means of a simple “dry-state” SERS approach, i.e., exploiting the interactions between a solid nanometallic substrate and dye molecules present on textiles, thus avoiding any extraction or necessity to remove samples. The challenges associated with instrumental constraints related to SERS analysis of bulk materials and possible contamination of artworks with metallic nanoparticles were approached. Different silver nanosubstrates, i.e., nanoislands and films obtained starting from two different metal colloids, were tested for this aim. The study also investigates different parameters associated with the synthesis of nanosubstrates influencing the enhancement of the “dry-state” SERS signals obtained. SERS spectra of anthraquinone red dyes were successfully recorded from reference wool threads using this simple approach. The results illustrate the usefulness of the practical and rapid “dry-state” SERS approach that could open new opportunities toward the non-destructive analysis of dyes in artefacts.


SERS Alizarin SERS Spectrum Silver Film SERS Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Prof. F. Cappitelli, Dr. D.S. Zerla, Dr. D. Maggioni and Dr. M. Gambino are sincerely thanked for having provided their centrifuges for this work.

Supplementary material

339_2016_209_MOESM1_ESM.pdf (324 kb)
Supplementary material 1 (PDF 323 kb)


  1. 1.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26(2), 163 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1 (1977)CrossRefGoogle Scholar
  3. 3.
    M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)CrossRefGoogle Scholar
  4. 4.
    T. Vo-Dinh, TrAC Trends Anal. Chem. 17(8–9), 557 (1998)CrossRefGoogle Scholar
  5. 5.
    T. Vo-Dinh, M.Y.K. Hiromoto, G.M. Begun, R.L. Moody, Anal. Chem. 56(9), 1667 (1984)CrossRefGoogle Scholar
  6. 6.
    K. Chen, M. Leona, K.C. Vo-Dinh, F. Yan, M.B. Wabuyele, T. Vo-Dinh, J. Raman Spectrosc. 37(4), 520 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K. Chen, K.C. Vo-Dinh, F. Yan, M.B. Wabuyele, T. Vo-Dinh, Anal. Chim. Acta 569(1–2), 234 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Leona, J. Stenger, E. Ferloni, J. Raman Spectrosc. 37(10), 981 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    B. Doherty, B.G. Brunetti, A. Sgamellotti, C. Miliani, J. Raman Spectrosc. 42(11), 1932 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M. Leona, P. Decuzzi, T.A. Kubic, G. Gates, J.R. Lombardi, Anal. Chem. 83(11), 3990 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Lofrumento, M. Ricci, E. Platania, M. Becucci, E. Castellucci, J. Raman Spectrosc. 44(1), 47 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    E. Platania, J.R. Lombardi, M. Leona, N. Shibayama, C. Lofrumento, M. Ricci, M. Becucci, E. Castellucci, J. Raman Spectrosc. 45(11–12), 1133 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Cesaratto, M. Leona, J.R. Lombardi, D. Comelli, A. Nevin, P. Londero, Angew. Chem. Int. Ed. 53(52), 14373 (2014)CrossRefGoogle Scholar
  14. 14.
    P.S. Londero, J.R. Lombardi, M. Leona, Anal. Chem. 85(11), 5463 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Kurouski, S. Zaleski, F. Casadio, R.P. Van Duyne, N.C. Shah, J. Am. Chem. Soc. 136(24), 8677 (2014)CrossRefGoogle Scholar
  16. 16.
    D.L. Stokes, Z. Chi, T. Vo-Dinh, Appl. Spectrosc. 58(3), 292 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Whitney, R.P. Van Duyne, F. Casadio, Proc. SPIE Int. Soc. Opt. Eng. 5993, 59930K-1 (2005)Google Scholar
  18. 18.
    A.V. Whitney, R.P. Van Duyne, F. Casadio, J. Raman Spectrosc. 37(10), 993 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    V.L. Schlegel, T.M. Cotton, Anal. Chem. 63(3), 241 (1991)CrossRefGoogle Scholar
  20. 20.
    I.M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, H.V. Demir, Opt. Express 15(22), 14289 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S. Bruni, V. Guglielmi, F. Pozzi, J. Raman Spectrosc. 42(6), 1267 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C. Zaffino, S. Bruni, V. Guglielmi, E. De Luca, J. Raman Spectrosc. 45(3), 211 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 267(5204), 1629 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    G. Chumanov, K. Sokolov, B.W. Gregory, T.M. Cotton, J. Phys. Chem. 99(23), 9466 (1995)CrossRefGoogle Scholar
  25. 25.
    X.L. Li, W.Q. Xu, J.H. Zhang, H.Y. Jia, B. Yang, B. Zhao, B.F. Li, Y. Ozaki, Langmuir 20(4), 1298 (2004)CrossRefGoogle Scholar
  26. 26.
    W. Zhou, A. Hu, S. Bai, Y. Ma, Q. Su, Nanoscale Res. Lett. 9, 1–9 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S. Bruni, E. De Luca, V. Guglielmi, F. Pozzi, Appl. Spectrosc. 65(9), 1017 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982)CrossRefGoogle Scholar
  29. 29.
    N. Leopold, B. Lendl, J. Phys. Chem. B 107(24), 5723 (2003)CrossRefGoogle Scholar
  30. 30.
    Yu. Wan, Zhirui Guo, Xiaoli Jiang, Kun Fang, Lu Xiang, Yu. Zhang, Gu Ning, J. Colloid Interface Sci. 394, 263 (2013)CrossRefGoogle Scholar
  31. 31.
    G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, R. Aroca, Langmuir 2(6), 689 (1986)CrossRefGoogle Scholar
  32. 32.
    A. Idone, M. Gulmini, A.I. Henry, F. Casadio, L.R. Chang, L. Appolonia, R.P. Van Duyne, N.C. Shah, Analyst 138(20), 5895 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    M.V. Canamares, J.V. Garcia-Ramos, J.D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Langmuir 21(18), 8546 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanItaly
  2. 2.Fitzpatrick Institute for PhotonicsDuke UniversityDurhamUSA
  3. 3.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  4. 4.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations