Applied Physics A

, 122:653 | Cite as

Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm

  • Dam-Bé Douti
  • Thomas Bégou
  • Fabien Lemarchand
  • Julien Lumeau
  • Mireille Commandré
  • Laurent GallaisEmail author


Laser- induced damage thresholds and morphologies of laser ablated sites on dielectric thin films are studied based on experiments and simulations. The films are single layers of hafnia and niobia deposited on fused silica substrates with a magnetron sputtering technique. Laser experiments are conducted with 500 fs pulses at 1030 and 343 nm, and the irradiated sites are characterized with optical profilometry and scanning electron microscopy. The results, i.e., LIDT and damage morphologies, are compared to simulations of energy deposition in the films based on the single rate equation for electron excitation, taking into account transient optical properties of the films during the pulse. The results suggest that a critical absorbed energy as a damage criterion gives consistent results both with the measured LIDT and the observed damage morphologies at fluences close to the damage threshold. Based on the numerical and experimental results, the determined LIDT evolution with the wavelength is described as nearly constant in the near-infrared region, and as rapidly decreasing with laser wavelength in the visible and near-ultraviolet regions.


Hafnia Energy Deposition Damage Threshold Electric Field Distribution Damage Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Bloembergen, Laser-induced electric breakdown in solids. Quantum Electron. 10, 375 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1968)MathSciNetGoogle Scholar
  3. 3.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    P. Martin, S. Guizard, Ph Daguzan, G. Petite, P. DOliveira, P. Meynadier, M. Perdrix, Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B 55, 5799 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics. Appl. Phys. A 81, 1627 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mero, A.J. Sabbah, J. Zeller, W. Rudolph, Femtosecond dynamics of dielectric films in the pre-ablation regime. Appl. Phys. A 81, 317 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S.W. Winkler, I.M. Burakov, R. Stoian, N.M. Bulgakova, A. Husakou, A. Mermillod-blondin, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, Transient response of dielectric materials exposed to ultrafast laser radiation. Appl. Phys. A 84, 413 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    T.E. Itina, N. Shcheblanov, Electronic excitation in femtosecond laser interactions with wide-band-gap materials. Appl. Phys. A 98, 769 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, J.C. Kieffer, Damage and ablation thresholds of fused-silica in femtosecond regime. Phys. Rev. B 84, 094104 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhu, X. Cheng, Z. Xu, L. Huang, Z. Liu, Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation. Appl. Phys. A 111, 1091 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. Lebugle, N. Sanner, O. Uteza, M. Sentis, Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses. Appl. Phys. A 114, 129 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Feit, A.M. Komashko, A.M. Rubenchik, Ultra-short pulse laser interaction with transparent dielectrics. Appl. Phys. A 79, 1657 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, F. Quéré, Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles. Appl. Surf. Sci. 186, 364 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    K. Waedegaard, D.B. Sandkamm, L. Haahr-Lillevang, K.G. Bay, P. Balling, Modeling short-pulse laser excitation of dielectric materials. Appl. Phys. A 117, 7 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    L. Gao, F. Lemarchand, M. Lequime, Comparison of different dispersion models for single layer optical thin film index determination. Thin Solid Films 520, 501 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    L. Gallais, M. Commandré, Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 53, A186 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    L.O. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen, L. Emmert, W. Rudolph, Investigations on SiO\(_2\) HfO\(_2\) mixtures for nanosecond and femtosecond pulses. Proc. SPIE 7842, 784207 (2010)CrossRefGoogle Scholar
  18. 18.
    B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L.H. Gao, M. Commandré, M. Lequime, A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films. Rev. Sci. Instrum. 83, 013109 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    ISO 21254-1:2011, Lasers and laser-related equipment—Test methods for laser-induced damage threshold—Part 1: Definitions and general principles (International Organization for Standardization, 2011)Google Scholar
  20. 20.
    J. Jasapara, A.V.V. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, Femtosecond laser pulse induced breakdown in dielectric thin films. Phys. Rev. B 63, 045117 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    D.B. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, L. Gallais, Quantitative phase imaging applied to laser damage detection and analysis. Appl. Opt. 54, 8375 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L. Gallais, D.-B. Douti, M. Commandre, G. Bataviciute, E. Pupka, M. Sciuka, L. Smalakys, V. Sirutkaitis, A. Melninkaitis, Wavelength dependence of femtosecond laser-induced damage threshold of optical materials. J. Appl. Phys. 117, 223103 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    L. Gallais, B. Mangote, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, V. Sirutkaitis, Transient interference implications on the subpicosecond laser damage of multidielectrics. Appl. Phys. Lett. 97, 051112 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    B. Rethfled, Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    B.H. Christensen, P. Balling, Modeling ultrashort-pulse laser ablation of dielectric materials. Phys. Rev. B 79, 155424 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    H.A. Macleod, Thin-Film Optical Filters (IOP Publishing, Bristol, 2001)CrossRefGoogle Scholar
  28. 28.
    A. Mouskeftaras, S. Guizard, N. Fedorov, S. Klimentov, Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpprobe experiment. Appl. Phys. A 110, 709 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S.I. Anisimov, B.S. Luk’yanchuk, Selected problems of laser ablation theory. Phys. Uspekhi A 45, 293 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Webber, Handbook of Optical Materials (CRC Press LLC, Boca Raton, 2003)Google Scholar
  31. 31.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (Taylor and Francis, London, 2007)Google Scholar
  32. 32.
    D.M. Simanovskii, H.A. Schwettman, H. Lee, A.J. Welch, Midinfrared optical breakdown in transparent dielectrics. Phys. Rev. Lett. 91, 107601 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, X.X. Li, S.Z. Xu, H.Y. Sun, D.H. Feng, C.B. Li, X.F. Wang, R.X. Li, Z.Z. Xu, X.K. He, H. Kuroda, Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals. Phys. Rev. B 73, 054105 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, O. Uteza, Long-wavelength multiphoton ionization inside band-gap solids. Phys. Rev. B 88, 195135 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249MarseilleFrance

Personalised recommendations