Applied Physics A

, 122:671 | Cite as

Regimes of radial growth for Ga-catalyzed GaAs nanowires

Article
Part of the following topical collections:
  1. Smart Materials and Structures

Abstract

We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.

Notes

Acknowledgments

This work was supported by the Russian Science Foundation under the Grant No. 14-22-00018.

References

  1. 1.
    P. Yang, R. Yan, M. Fardy, Nano Lett. 10, 1529 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    B.J. Ohlsson, M.T. Bjork, A.I. Persson, C. Thelander, L.R. Wallenberg, M.H. Magnusson, K. Deppert, L. Samuelson, Phys. E 13, 1126 (2002)CrossRefGoogle Scholar
  3. 3.
    F. Jabeen, V. Grillo, S. Rubini, F. Martelli, Nanotechnology 19, 275711 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    S. Plissard, K.A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, P. Caroff, Nanotechnology 21, 385602 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    D. Rudolph, S. Hertenberger, S. Bolte, W. Paosangthong, D. Spirkoska, M. Doblinger, M. Bichler, J.J. Finley, G. Abstreiter, G. Koblmuller, Nano Lett. 11, 3848 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    L.T.T. Giang, C. Bougerol, H. Mariette, R. Songmuang, J. Cryst. Growth 364, 118–122 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Munshi, D.L. Dheeraj, V.T. Fauske, D.C. Kim, J. Huh, J.F. Reinertsen, L. Ahtapodov, K.D. Lee, B. Heidari, A.T.J. van Helvoort, B.O. Fimland, H. Weman, Nano Lett. 14, 960 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    V.G. Dubrovskii, G.E. Cirlin, N.V. Sibirev, F. Jabeen, J.C. Harmand, P. Werner, Nano Lett. 11, 1247 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    G. Priante, S. Ambrosini, V.G. Dubrovskii, A. Franciosi, S. Rubini, Cryst. Growth Des. 13, 3976 (2013)CrossRefGoogle Scholar
  11. 11.
    M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Cryst. Growth Des. 13, 91 (2013)CrossRefGoogle Scholar
  12. 12.
    F. Glas, M.R. Ramdani, G. Patriarche, J.C. Harmand, Phys. Rev. B 88, 195304 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    V.G. Dubrovskii, T. Xu, A. Díaz Álvarez, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier, Nano Lett. 15, 5580 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Tersoff, Nano Lett. 15, 6609 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    F. Matteini, V.G. Dubrovskii, D. Rüffer, G. Tütüncüoğlu, Y. Fontana, A. Fontcuberta i Morral, Nanotechnology 26, 105603 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    F. Glas, J. Appl. Phys. 108, 073506 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    V.G. Dubrovskii, Appl. Phys. Lett. 104, 053110 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    V.G. Dubrovskii, J. Grechenkov, Cryst. Growth Des. 15, 340 (2015)CrossRefGoogle Scholar
  19. 19.
    V.G. Dubrovskii, J. Cryst. Growth, 2016, v. 440, 62 (2016)Google Scholar
  20. 20.
    V.G. Dubrovskii, Phys. Rev. B 87, 195426 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    F. Glas, Phys. Rev. B 90, 125406 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    V.G. Dubrovskii, J. Chem. Phys. 142, 204702 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    V.G. Dubrovskii, M.V. Nazarenko, J. Chem. Phys. 132, 114507 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    F. Glas, Phys. Stat. Sol. B 247, 254 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    V.G. Dubrovskii, V. Consonni, L. Geelhaar, A. Trampert, H. Riechert, Appl. Phys. Lett. 100, 153101 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    V.G. Dubrovskii, V. Consonni, A. Trampert, L. Geelhaar, H. Riechert, Phys. Rev. B 85, 165317 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • V. G. Dubrovskii
    • 1
    • 2
    • 3
  • Y. Berdnikov
    • 1
    • 3
  • N. V. Sibirev
    • 1
    • 3
  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical Technical Institute RASSt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations