Advertisement

Applied Physics A

, 122:560 | Cite as

Observation of enhanced field emission properties of Au/TiO2 nanocomposite

  • Girish P. Patil
  • Vivekanand S. Bagal
  • Sachin R. Suryawanshi
  • Dattatray J. Late
  • Mahendra A. More
  • Padmakar G. ChavanEmail author
Article

Abstract

Simple and low-cost method of thermal annealing was used to decorate Gold (Au) nanoparticles on aligned TiO2 nanotubes. The aligned TiO2 nanotubes were decorated by Au nanoparticles with an average diameter of 9, 18 and 28 nm (aligned TiO2 nanotubes referred as specimen A and TiO2 nanotubes decorated by Au nanoparticles with average diameter of 9, 18 and 28 nm are referred as specimen B, C and D, respectively). The detailed characterization such as structural, morphological and elemental analysis of TiO2 and Au/TiO2 nanocomposite have been carried out using X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, the meticulous comparative field emission characteristics of the aligned TiO2 nanotubes and Au/TiO2 nanocomposite have been performed. The turn-on field defined for the current density of 10 μA/cm2 has been found to be 3.9, 2.8, 3.2 and 3.7 V/μm for specimen A, B, C and D, respectively. The observed low turn-on field of specimen B has been found to be superior than the other semiconducting nanocomposites reported in the literature. The emission current stability over a period of 3 h is found to be better for all the specimens. To the best of our knowledge, a systematic field emission study of Au/TiO2 nanocomposite has not been explored. The observed superior field emission study of Au/TiO2 nanocomposite indicates their possible use in micro/nanoelectronic devices.

Keywords

TiO2 TiO2 Nanotubes Field Emission Scanning Electron Microscope Image Titanium Foil Field Emission Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

GPP and PGC sincerely thank to SERB DST, Government of India (Ref. No.: SB/EMEQ-208/2013 dated 23/08/2013) for financial support. GPP and PGC also thank UGS SAP-BSR Phase-III project for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

339_2016_90_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1154 kb)

References

  1. 1.
    C.N.R. Rao, S.R.C. Vivekchand, K. Biswasa, A. Govindaraja, Dalton Trans. 34, 3728 (2007)CrossRefGoogle Scholar
  2. 2.
    R.K. Jha, P.K. Jha, K. Chaudhury, S.V.S. Rana, S.K. Guha, Nano Rev. 5, 22762 (2014)CrossRefGoogle Scholar
  3. 3.
    R.W. Siegel, in Physics of New Materials, Chap. 4, ed. by F.E. Fujita (Springer, Berlin, 1994)Google Scholar
  4. 4.
    R.P. Andre, R.S. Averbacka, W.L. Browna, L.E. Brusa, W.A. Goddard, A. Kaldora, S.G. Louiea, M. Moscovitsa, P.S. Peercya, S.J. Rileya, R.W. Siegela, F. Spaepena, Y. Wanga, J. Mater. Res. 4, 704 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    H. Gleiter, Z. Metall. 86, 78 (1995)Google Scholar
  6. 6.
    S. Yoriya, N. Bao, C.A. Grimes, J. Mater. Chem. 21, 13909 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Yan, F. Zhou, J. Mater. Chem. 21, 9406 (2011)CrossRefGoogle Scholar
  8. 8.
    P.V. Kamat, Pure Appl. Chem. 74, 1693 (2002)CrossRefGoogle Scholar
  9. 9.
    I. Paramasivam, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 71 (2008)CrossRefGoogle Scholar
  10. 10.
    X. He, Y. Cai, H. Zhang, C. Liang, J. Mater. Chem. 21, 475 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Ye, Y. Bando, X. Fang, G. Shen, D. Golberg, J. Phys. Chem. C 111, 12673 (2007)CrossRefGoogle Scholar
  12. 12.
    F.J. Sheini, J. Singh, O.N. Srivasatva, D.S. Joag, M.A. More, Appl. Surf. Sci. 256, 2110 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  14. 14.
    N. Wang, T. Tachikawa, T. Majima, Chem. Sci. 2, 891 (2011)CrossRefGoogle Scholar
  15. 15.
    Q. Wang, T. Butburee, X. Wu, H. Chen, G. Liu, L. Wang, J. Mater. Chem. A 1, 13524 (2013)CrossRefGoogle Scholar
  16. 16.
    L.A. Gautier, V.L. Borgne, N. Delegan, R. Pandiyan, M.A. Khakani, Nanotechnology 26, 045706 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    F. Li, L. Zhang, S. Wu, Z. Li, Y. Wang, X. Liu, Mater. Lett. 145, 209 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Li, S. Wu, L. Zhang, Z. Li, Appl. Phys. A 120, 1383 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    G. Mittal, I. Lahiri, J. Phys. D Appl. Phys. 47, 323001 (2014)CrossRefGoogle Scholar
  20. 20.
    J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.S. Guo, W.M. Liu, Thin Solid Films 517, 4390 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, J. Mater. Chem. 18, 509 (2008)CrossRefGoogle Scholar
  22. 22.
    T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando, D. Golberg, Chem. Soc. Rev. 40, 2986 (2011)CrossRefGoogle Scholar
  23. 23.
    B.H. Ma, Y. Li, C.W. Wang, J. Wang, J.B. Chen, W.M. Liu, Acta Phys. Sin. 57, 5800 (2008)Google Scholar
  24. 24.
    G.P. Patil, V.S. Bagal, C.R. Mahajan, V.R. Chaudhari, S.R. Suryavanshi, M.A. More, P.G. Chavan, Vacuum 123, 167 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    L.C. Almeida, M.V.B. Zanoni, J. Braz. Chem. Soc. 25, 579 (2014)Google Scholar
  26. 26.
    Z.Y. Zou, Q. Wang, X.J. Chen, S.L. Qu, J. Appl. Phys. 105, 103114 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    G.A. Rance, D.H. Marsh, S.J. Bourne, T.J. Reade, A.N. Khlobystov, ACS Nano 4(8), 4920 (2010)CrossRefGoogle Scholar
  28. 28.
    H. Kim, C. Choi, J. Khamwannah, S.Y. Noh, Y. Zhang, T.Y. Seong, S. Jin, J. Renew. Sustain. Energy 5, 053104 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Wu, S. Lo, K. Song, B.K. Vijayan, W. Li, K.A. Gray, V.P. Dravid, J. Mater. Res. 26, 1646 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Y.M. Chang, M.L. Lin, T.Y. Lai, H.Y. Lee, C.M. Lin, Y.C. Wu, J.Y. Juang, A.C.S. Appl, Mater. Interfaces 4, 6676 (2012)CrossRefGoogle Scholar
  31. 31.
    P. Stefanov, M. Shipochka, P. Stefchev, Z. Raicheva, V. Lazarova, L. Spassov, J. Phys. Conf. Ser. 100, 012039 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    N. Kruse, S. Chenakin, Appl. Catal. A 39, 367 (2011)CrossRefGoogle Scholar
  33. 33.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  34. 34.
    T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Bull. Mater. Sci. 29(7), 705 (2006)Google Scholar
  35. 35.
    Z. Shao, Z. Tian, J. Pang, G. Feng, B. Guo, C. Zeng, Y. Yang, S. Liu, Q. Wang, Mater. Res. Express 1, 045033 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    C.C. Wang, K.W. Wang, T.P. Perng, Appl. Phys. Lett. 96, 143102 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    G. Liu, F. Li, D.W. Wang, D.M. Tang, C. Liu, X. Ma, G.Q. Lu, H.M. Cheng, Nanotechnology 19, 025606 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L.Q. Wang, C.W. Wang, J.B. Chen, R.S. Guo, F. Zhou, W.M. Liu, Thin Solid Films 519, 8173 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, A.K. Tyagi, J. Phys. Chem. C 116, 16740 (2012)CrossRefGoogle Scholar
  40. 40.
    S.R. Suryawanshi, A.K. Singh, M. Deo, D.J. Late, S. Sinha, M.A. More, Cryst. Eng. Commun. 17, 3936 (2015)CrossRefGoogle Scholar
  41. 41.
    R. Devarapalli, R. Kashid, A. Deshmukh, P. Sharma, M. Das, M. More, M. Shelke, J. Mater. Chem. C. 1, 5040 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Wang, Fundamentals of Semiconductor Theory and Device Physics, vol. 131 (Prentice-Hall Inc., New Jersey, 1989)Google Scholar
  43. 43.
    G. Sinha, S.K. Panda, A. Datta, P.G. Chavan, D.R. Shinde, M.A. More, D.S. Joag, A. Patra, A.C.S. Appl, Mater. Interfaces 3, 2130 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Girish P. Patil
    • 1
  • Vivekanand S. Bagal
    • 1
    • 2
  • Sachin R. Suryawanshi
    • 3
  • Dattatray J. Late
    • 4
  • Mahendra A. More
    • 3
  • Padmakar G. Chavan
    • 1
    Email author
  1. 1.Department of Physics, School of Physical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of Applied Sciences and Humanities, SVKM’s NMIMSMukesh Patel School of Technology Management and Engineering, Shirpur CampusShirpurIndia
  3. 3.Department of Physics, Center for Advanced Studies in Materials Science and Condensed Matter PhysicsSavitribai Phule Pune UniversityPuneIndia
  4. 4.Physical and Materials Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations