Applied Physics A

, 122:593 | Cite as

Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses

  • J. Csontos
  • Z. Toth
  • Z. Pápa
  • J. Budai
  • B. Kiss
  • A. Börzsönyi
  • M. Füle
Article
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies

Abstract

In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium–sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs–200 ps) and a dye–KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78–80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.

References

  1. 1.
    V.V. Iyengar, B.K. Nayak, K.L. More, H.M. Meyer, M.D. Biegalski, J.V. Li, M.C. Gupta, Solar Energy Mater. Solar Cells 95, 2745 (2011)CrossRefGoogle Scholar
  2. 2.
    B.G. Lee, L. Yu-Ting, S. Meng-Ju, E. Mazur, H. M. Branz, Y.-T. Lin, M.-J. Sher, in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 1606Google Scholar
  3. 3.
    V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    G. Miyaji, K. Zhang, J. Fujita, K. Miyazaki, J. Laser Micro/Nanoeng. 7, 198 (2012)CrossRefGoogle Scholar
  7. 7.
    T.J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, J. Bonse, J. Appl. Phys. 116, 074902 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)CrossRefGoogle Scholar
  9. 9.
    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Han, S. Qu, Chem. Phys. Lett. 495, 241 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Csontos, Z. Pápa, A. Gárdián, M. Füle, J. Budai, Z. Toth, Appl. Surf. Sci. 336, 343 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T.J.-Y. Derrien, J. Krüger, T.E. Itina, S. Höhm, A. Rosenfeld, J. Bonse, Opt. Express 21, 29643 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    T.J.-Y. Derriena, R. Torresa, T. Sarneta, M. Sentisa, T.E. Itina, Appl. Surf. Sci. 258, 9487 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Füle, A. Gárdián, J. Budai, Z. Tóth, J. Laser Micro/Nanoeng. 10, 74 (2015)CrossRefGoogle Scholar
  15. 15.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Appl. Phys. Lett. 82, 1703 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    M. Pfeiffer, A. Engel, H. Gruettner, K. Guenther, F. Marquardt, G. Reisse, S. Weissmantel, Appl. Phys. A Mater. Sci. Process. 110, 655 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Csete, Z. Bor, Appl. Surf. Sci. 133, 5 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Phys. Rev. B 79, 125436 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    E.L. Gurevich, S.V. Gurevich, Appl. Surf. Sci. 302, 118 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    E.L. Gurevich, Appl. Surf. Sci. 278, 52 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    V.I. Emelyanov, V.N. Seminogov, Kvantovaya Elektron. Mosc. 11, 871 (1984)ADSGoogle Scholar
  23. 23.
    W. Zhang, G. Cheng, Q. Feng, Appl. Surf. Sci. 263, 436 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197, 891 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 208(209), 486 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    S. Szatmári, Appl. Phys. B 58, 211 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, D. Kaplan, Appl. Phys. B 99, 7 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    P. Tournois, Opt. Commun. 140, 245 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    A. Borzsonyi, A.P. Kovacs, K. Osvay, Appl. Sci. 3, 515 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Toth, I. Hanyecz, A. Gardian, J. Budai, J. Csontos, Z. Papa, M. Füle, Thin Solid Films 571, 631 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, J. Appl. Phys. 105, 034908 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang, H. Kuroda, Phys. Rev. B 72, 125429 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke, Opt. Lett. 36, 229 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, J. Fujita, Opt. Express 20, 14848 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    E.V. Golosov, A.A. Ionin, YuR Kolobov, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, YuN Novoselov, L.V. Seleznev, D.V. Sinitsyn, A.R. Sharipov, Phys. Rev. B 83, 115426 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    M. Huang, F. Zhao, Y. Cheng, Z. Xu, Opt. Lett. 37, 677 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A. Beltaos, A.G. Kovacevic, A. Matkovic, U. Ralevic, S. Savic-Sevic, D. Jovanovic, B.M. Jelenkovic, R. Gajic, J. Appl. Phys. 116, 204306 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    W. Zhang, M. Zhou, G. Amoako, Y-L. Shao, B-J. Li, J. Li, C-Y. Gao, Lasers Eng. 25, 397 (2013)Google Scholar
  43. 43.
    P.J.F. Harris, Philos. Mag. 84, 3159 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    E. Gamaly, Femtosecond Laser-Matter Interactions (Pan Stanford Publihing Pte. Ltd., Singapore, 2011)Google Scholar
  45. 45.
    D.O. Gericke, M.S. Murillo, M. Schlanges, Phys. Rev. E 65, 036418 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    M. Lyon, S.D. Bergeson, G. Hart, M.S. Murillo, Sci. Rep. 5, 15693 (2015). doi:10.1038/srep15693 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Department of Oral Biology and Experimental Dental ResearchUniversity of SzegedSzegedHungary
  3. 3.ELI-HU Non-Profit LtdSzegedHungary
  4. 4.Department of Experimental PhysicsUniversity of SzegedSzegedHungary

Personalised recommendations