Applied Physics A

, 122:52 | Cite as

Large arrays of ultra-high aspect ratio periodic silicon nanowires obtained via top–down route

  • Halldor Gudfinnur Svavarsson
  • Birgir Hrafn Hallgrimsson
  • Manoj Niraula
  • Kyu Jin Lee
  • Robert Magnusson
Article

Abstract

Metal-catalysed etching (MCE) is a simple and versatile method for fabrication of silicon nanowires, of high structural quality. When combined with laser interference lithography (LIL), large areas of periodic structures can be generated in only few steps. The aspect ratio of such periodic structure is however commonly not higher than several decades or very few hundred. Here, a combined MCE and LIL techniques were applied to fabricate dense (4 × 108 cm−3), periodic arrays of vertically aligned silicon nanowires with aspect ratio of up to 103. This is a considerable higher number than previously reported on for periodic silicon wire arrays prepared with top–down approaches. The wires were slightly tapered, with top and bottom diameters ranging from 370 to 195 nm and length of up to 200 μm. A potential use of the nanowires as light absorber is demonstrated by measuring reflection in integrating sphere. An average total absorption of ~97 % was observed for 200-μm-long wires in the spectral range of 450–1000 nm. A comparison to simulated absorption spectra is given.

Keywords

Transverse Magnetic Transverse Electric Silicon Nanowires Wire Array SiNWs Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported in part by the Energy Research Fund of the National Power Company of Iceland and by the UT System Texas Nanoelectronics Research Superiority Award funded by the State of Texas Emerging Technology Fund. Additional support was provided by the Texas Instruments Distinguished University Chair in Nanoelectronics endowment.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in addition to what is described in the Acknowledgments.

References

  1. 1.
    K. Peng, X. Wang, L. Li, Y. Hu, S. Lee, Silicon nanowires for advanced energy conversion. Nano Today 8(1), 75–97 (2013). doi: 10.1016/j.nantod.2012.12.009 CrossRefGoogle Scholar
  2. 2.
    Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013). doi: 10.1002/adma.201301943 CrossRefGoogle Scholar
  3. 3.
    Z. Guo, J.Z.K. Jung, Y. Xiao, S. Jee, S. Moiz, J. Lee, Optical properties of silicon nanowires array fabricated by metal-assisted electroless etching. Proc. SPIE (2010). doi: 10.1117/12.860397 Google Scholar
  4. 4.
    M. Hasan, M. Huq, Z. Mahmood, A review on electronic and optical properties of silicon nanowire and its different growth techniques. Springerplus (2013). doi: 10.1186/2193-1801-2-151 Google Scholar
  5. 5.
    L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91(23), 233117 (2007). doi: 10.1063/1.2821113 ADSCrossRefGoogle Scholar
  6. 6.
    J. Yang, J. Li, Q. Gong, J. Teng, M. Hong, High aspect ratio SiNW arrays with Ag nanoparticles decoration for strong SERS detection. Nanotechnology 25(46), 465707 (2014). doi: 10.1088/0957-4484/25/46/465707 ADSCrossRefGoogle Scholar
  7. 7.
    E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010). doi: 10.1021/nl100161z ADSCrossRefGoogle Scholar
  8. 8.
    X. Li, P. Bohn, Metal-assisted chemical etching in HF/H(2)O(2) produces porous silicon. Appl. Phys. Lett. 77(16), 2572–2574 (2000). doi: 10.1063/1.1319191 ADSCrossRefGoogle Scholar
  9. 9.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23(2), 285–308 (2011). doi: 10.1002/adma.201001784 CrossRefGoogle Scholar
  10. 10.
    J. Seo, J. Park, S. Kim, B. Park, Z. Ma, J. Choi, B. Ju, Nanopatterning by laser interference lithography: applications to optical devices. J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014). doi: 10.1166/jnn.2014.9199 CrossRefGoogle Scholar
  11. 11.
    Y. Liu, W. Sun, Y. Jiang, X. Zhao, Fabrication of bifacial wafer-scale silicon nanowire arrays with ultra-high aspect ratio through controllable metal-assisted chemical etching. Mater. Lett. 139, 437–442 (2015). doi: 10.1016/j.matlet.2014.10.084 CrossRefGoogle Scholar
  12. 12.
    M. Zaremba-Tymieniecki, C. Li, K. Fobelets, Z. Durrani, Field-effect transistors using silicon nanowires prepared by electroless chemical etching. IEEE Electron. Dev. Lett. 31(8), 860–862 (2010). doi: 10.1109/LED.2010.2050572 ADSCrossRefGoogle Scholar
  13. 13.
    X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: a review. Curr. Opin. Solid State Mater. Sci. 16(2), 71–81 (2012). doi: 10.1016/j.cossms.2011.11.002 ADSCrossRefGoogle Scholar
  14. 14.
    A. Zeniou, K. Ellinas, A. Olziersky, E. Gogolides, Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity. Nanotechnology (2010). doi: 10.1088/0957-4484/25/3/035302 Google Scholar
  15. 15.
    J. Nakamura, K. Higuchi, K. Maenaka, Vertical Si nanowire with ultra-high-aspect-ratio by combined top–down processing technique. Microsyst. Technol. 19(3), 433–438 (2013). doi: 10.1007/s00542-012-1662-2 CrossRefGoogle Scholar
  16. 16.
    M. Poudineh, Z. Sanaee, A. Gholizadeh, S. Soleimani, S. Mohajerzadeh, Formation of highly ordered silicon nanowires by a high-speed deep etching. IEEE Trans. Nanotechnol. 12(5), 712–718 (2013). doi: 10.1109/TNANO.2013.2269479 ADSCrossRefGoogle Scholar
  17. 17.
    S. Chang, V. Chuang, S. Boles, C. Ross, C. Thompson, Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv. Funct. Mater. 19(15), 2495–2500 (2009). doi: 10.1002/adfm.200900181 CrossRefGoogle Scholar
  18. 18.
    M. Lajvardi, H. Eshghi, M. Ghazi, M. Izadifard, A. Goodarzi, Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching. Mater. Sci. Semicond. Process. 40, 556–563 (2015). doi: 10.1016/j.mssp.2015.07.032 CrossRefGoogle Scholar
  19. 19.
    J. Ho, Q. Wee, J. Dumond, A. Tay, S. Chua, Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale. Nanoscale Res. Lett. (2013). doi: 10.1186/1556-276X-8-506 Google Scholar
  20. 20.
    A. Smyrnakis, V. Almpanis, N. Papanikolaou, V. Constantoudis, N. Papanikolaou, E. Gogolides, Optical properties of high aspect ratio plasma etched silicon nanowires: fabrication-induced variability dramatically reduces reflectance. Nanotechnology 26(8), 085301 (2015). doi: 10.1088/0957-4484/26/8/085301 ADSCrossRefGoogle Scholar
  21. 21.
    H. Alaeian, A. Atre, J. Dionne, Optimized light absorption in Si wire array solar cells. J. Opt. 14(2), 024006 (2012). doi: 10.1088/2040-8978/14/2/024006 ADSCrossRefGoogle Scholar
  22. 22.
    S. Chang, V. Chuang, S. Boles, C. Thompson, Metal-catalyzed etching of vertically aligned polysilicon and amorphous silicon nanowire arrays by etching direction confinement. Adv. Funct. Mater. 20(24), 4364–4370 (2010). doi: 10.1002/adfm.201000437 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Halldor Gudfinnur Svavarsson
    • 1
  • Birgir Hrafn Hallgrimsson
    • 1
  • Manoj Niraula
    • 2
  • Kyu Jin Lee
    • 2
  • Robert Magnusson
    • 2
  1. 1.School of Science and EngineeringReykjavík UniversityReykjavíkIceland
  2. 2.Department of Electrical EngineeringThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations