Applied Physics A

, 122:112 | Cite as

Electrohydrodynamic direct-writing microfiber patterns under stretching

  • Gaofeng Zheng
  • Lingling Sun
  • Xiang Wang
  • Jin Wei
  • Lei Xu
  • Yifang Liu
  • Jianyi ZhengEmail author
  • Juan LiuEmail author


In this paper, the rheology and deposition behaviors of electrohydrodynamic direct-write (EDW) jet under stretching tension are studied. The EDW jet is stretched into tightened state by the drag force from moving collector, when moving speed of collector is higher than deposition velocity of jet. The drag force from the moving collector provides an extra force to stretch the charged jet, which promotes the stability and decreases the diameter of direct-written fiber. The whipping and bending motion of jet can be overcome by the drag force, and then, straight orderly fibers are direct-written along the trajectory of collector. The falling jet would be also deviated from the extension line of spinneret by the drag force. As the collector velocity increases from 10 to 1000 mm/s, the average line width of direct-written microfiber decreases from 18.89 to 0.89 µm. The thickness of microfiber ranges from 100 nm to 1.5 µm. The moving collector leads to large deviation of charged jet. The tightened charged jet has good resistance against the interference of charge repulsion force, which helps to direct-write orderly nanofiber. During the EDW process, the mechanical stretching force had provided an excellent function to control the morphology and deposition pattern of micro-/nanofiber.


Drag Force Deposition Velocity Motion Velocity Motion Platform Taylor Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 51305373, 51405408), Fundamental Research Funds for the Central Universities (No. 20720140517) and Natural Science Foundation of Fujian Province of China (No. 2014J05063).


  1. 1.
    D. Sun, C. Chang, S. Li, L. Lin, Nano Lett. 6, 839 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, L. Lin, J. Phys. D Appl. Phys. 43, 415501 (2010)CrossRefGoogle Scholar
  3. 3.
    W. Li, G. Zheng, X. Wang, D. Sun, Opt. Precis. Eng. 18, 2231 (2010)Google Scholar
  4. 4.
    J. Jang, H. Oh, J. Lee, T. Song, Y.H. Jeong, D.W. Cho, Appl. Phys. Lett. 102, 211914 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    X. Wang, G. Zheng, L. Xu, W. Cheng, B. Xu, Y. Huang, D. Sun, Appl. Phys. A Mater. Sci. Process. 108, 825 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    G.F. Zheng, Y.B. Pei, X. Wang, J.Y. Zheng, D.H. Sun, Chin. Phys. B 23, 066102 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Liu, C. Pan, L. Lin, J. Huang, Z. Ou, Smart Mater. Struct. 23, 02503 (2014)Google Scholar
  8. 8.
    C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Nano Lett. 10, 726 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D.C. Daniela, F. Vito, R. Fabrizio, S. Sandro, L. Luca, C. Andrea, P. Dario, Nanoscale 5, 11637 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    L. Xu, W. Han, G. Zheng, D. Wu, X. Wang, D. Sun, Open Mech. Eng. J. 9, 666 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Lei, X. Lu, F. Yang, AIP Adv. 5, 041301 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    G. Zheng, G. He, H. Liu, J. Zheng, W. Li, D. Sun, Opt. Precis. Eng. 22, 1555 (2014)CrossRefGoogle Scholar
  13. 13.
    Z. Liu, C. Pan, C. Su, L. Lin, Y. Chen and J. Tsai, Sensor Actuat. A Phys. 211, 78 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Wang, L. Xu, G. Zheng, W. Cheng, D. Sun, Sci. China Technol. Sci. 55, 1603 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Zheng, Z. Yu, M. Zhuang, W. Wei, Y. Zhao, J. Zheng, D. Sun, Appl. Phys. A Mater. Sci. Process. 116, 171 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    H. Kim, M. Lee, K.J. Park, S. Kim, L. Mahadevan, Nano Lett. 10, 2138 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    G. Zheng, L. Wang, D. Sun, Nanotechnol. Precis. Eng. 6, 20 (2008)Google Scholar
  18. 18.
    Z. Zhu, X. Chen, S. Huang, Z. Du, W. Liao, F. Fang, D. Peng, H. Wang, Appl. Phys. A Mater. Sci. Process. 120, 1435 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    H. Wang, M. Li, S. Huang, J. Zheng, X. Chen, X. Chen, Z. Zhu, Appl. Phys. A Mater. Sci. Process. 118, 621 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    F. Fang, X. Chen, Z. Du, Z. Zhu, X. Chen, H. Wang, P. Wu, Polymers 7, 1577 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Bu, Y. Huang, H. Deng, Z. Yin, J. Phys. D Appl. Phys. 45, 405301 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    G. Zheng, L. Wang, H. Wang, D. Sun, W. Li, L. Lin, Adv. Mater. Res. 60–61, 439 (2009)CrossRefGoogle Scholar
  23. 23.
    Z. Lin, B. Yao, J. Ye, G. Zheng, Adv. Mater. Res. 197, 3 (2011)Google Scholar
  24. 24.
    M. Soheila, D. Yu, D.I. Jeffery, J. Polym. Sci. B Polym. Phys. 53, 1171 (2015)Google Scholar
  25. 25.
    H. Wang, M. Li, X. Chen, J. Zheng, X. Chen, Z. Zhu, AIP Adv. 5, 041302 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Aerospace EngineeringXiamen UniversityXiamenChina
  2. 2.School of Mechanical and Automotive EngineeringXiamen University of TechnologyXiamenChina
  3. 3.School of Mechanical and Electric EngineeringJingdezhen Ceramic InstituteJingdezhenChina

Personalised recommendations