Applied Physics A

, 122:19 | Cite as

A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings

  • H. Rajabi
  • M. Rezasefat
  • A. Darvizeh
  • J.-H. Dirks
  • Sh. Eshghi
  • A. Shafiei
  • T. Mirzababaie Mostofi
  • S. N. Gorb
Invited Paper


Although wings of insects show a large variation in morphology, they are all made from a network of irregular veins interconnected through membranous areas. Depending on their shape, size, and position, wing veins are usually divided into three different groups: longitudinal veins, cross-veins and ambient veins. The veins together with the membrane and some other elements such as spines, nodus and pterostigma can be considered as the wing’s “constructional elements”. In spite of rather extensive literature on dragonfly wing structure, the role of each of these elements in determining the wing’s function remains mostly unknown. As this question is difficult to answer in vivo using biomechanical experiments on actual wings, this study was undertaken to reveal the effects of the constructional elements on the mechanical behaviour of dragonfly wings by applying numerical simulations. An image processing technique was used to develop 12 finite element models of the insect wings with different constructional elements. The mechanical behaviour of these models was then simulated under normal and shear stresses due to tension, bending and torsion. A free vibration analysis was also performed to determine the resonant frequencies and the mode shapes of the models. For the first time, a quantitative comparison was carried out between the mechanical effects selectively caused by different elements. Our results suggest that the complex interactions of veins, membranes and corrugations may considerably affect the dynamic deformation of the insect wings during flight.


Mode Shape Torsional Rigidity Torsional Moment Torsional Deformation Wing Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by German Academic Exchange Service (DAAD) to HR (Grant Number: 91524738-57048249) and the Max Planck Society.

Compliance with ethical standards

Conflicts of interest statement

The authors declare there are no conflicts of interest to disclose.

Supplementary material

339_2015_9557_MOESM1_ESM.docx (10 kb)
Supplementary material 1 (DOCX 10 kb)
339_2015_9557_MOESM2_ESM.txt (3.9 mb)
Supplementary material 2 (TXT 4043 kb)
339_2015_9557_MOESM3_ESM.txt (3.8 mb)
Supplementary material 3 (TXT 3923 kb)
339_2015_9557_MOESM4_ESM.txt (3.9 mb)
Supplementary material 4 (TXT 4037 kb)
339_2015_9557_MOESM5_ESM.txt (3.9 mb)
Supplementary material 5 (TXT 3951 kb)


  1. 1.
    A. Azuma, T. Watanabe, Flight performance of a dragonfly. J. Exp. Biol. 137(1), 221–252 (1988)Google Scholar
  2. 2.
    A. Azuma, S. Azuma, I. Watanabe, T. Furuta, Flight mechanics of a dragonfly. J. Exp. Biol. 116(1), 79–107 (1985)Google Scholar
  3. 3.
    T.M. Broering, Y. Lian, W. Henshaw, Numerical investigation of energy extraction in a tandem flapping wing configuration. AIAA J. 50(11), 2295–2307 (2012)CrossRefADSGoogle Scholar
  4. 4.
    J.S. Chen, J.Y. Chen, Y.F. Chou, On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313(3), 643–654 (2008)CrossRefADSGoogle Scholar
  5. 5.
    P. Coffin, G. Ahmadi, R. Jha, P. Marzocca, Experimental In-flight rolling MAV wing deployment and aerodynamic characterization. SAE Int. J. Aerosp 4, 1106–1114 (2011)CrossRefGoogle Scholar
  6. 6.
    S.A. Combes, T.L. Daniel, Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Exp. Biol. 206(17), 2989–2997 (2003)CrossRefGoogle Scholar
  7. 7.
    S.A. Combes, T.L. Daniel, Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206(17), 2999–3006 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Darvizeh, N. Shafiee, M. Darvizeh, H. Habibollahi, H. Rajabi, Investigation of the effects of constructional elements on the biomechanical behavior of desert locust hind wing. Modares J Mech Eng 14(14), 235–244 (2015)Google Scholar
  9. 9.
    A. Darvizeh, H. Rajabi, A. Khaheshi, Biomechanical aspects of dragonfly wing composite structure. in Presented at the International Bionic Engineering Conference, Boston (2011a)Google Scholar
  10. 10.
    A. Darvizeh, H. Rajabi, A. Khaheshi, M.K. Sobhani, J. Etedadi, Morphologicaland numerical investigations of butterfly wing composite structure. in Presented at the International Bionic Engineering Conference, Boston (2011b)Google Scholar
  11. 11.
    M. Darvizeh, A. Darvizeh, H. Rajabi, A. Rezaei, Free vibration analysis of dragonfly wings using finite element method. Int. J. Multiphys. 3(1), 101–110 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Dileo, X. Deng, Design of and experiments on a dragonfly-inspired robot. Adv. Robot. 23(7–8), 1003–1021 (2009)CrossRefGoogle Scholar
  13. 13.
    J.H. Dirks, D. Taylor, Fracture toughness of locust cuticle. J. Exp. Biol. 215(9), 1502–1508 (2012)CrossRefGoogle Scholar
  14. 14.
    J.H. Dirks, D. Taylor, Veins improve fracture toughness of insect wings. PLoS ONE 7(8), e43411 (2012)CrossRefADSGoogle Scholar
  15. 15.
    S. Eshghi, H. Rajabi, A. Darvizeh, V. Nooraeefar, A. Shafiei, T.M. Mostofi, M. Monsef, A simple method for geometric modelling of biological structures using image processing technique. Scientia Iranica (in press)Google Scholar
  16. 16.
    N. Gaissert, R. Mugrauer, G. Mugrauer, A. Jebens, K. Jebens, E.M. Knubben, Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight. in Towards Autonomous Robotic Systems, ed. by A. Natraj, S. Cameron, C. Melhuish, M. Witkowski (Springer, Berlin, 2014), pp. 90–100Google Scholar
  17. 17.
    S.N. Gorb, A. Kesel, J. Berger, Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering. Arthropod Struct. Dev. 29(2), 129–135 (2000)CrossRefGoogle Scholar
  18. 18.
    R.C. Herbert, P.G. Young, C.W. Smith, R.J. Wootton, K.E. Evans, The hind wing of the desert locust (Schistocerca gregaria Forskal). III. A finite element analysis of a deployable structure. J. Exp. Biol. 203(19), 2945–2955 (2000)Google Scholar
  19. 19.
    S.R. Jongerius, D. Lentink, Structural analysis of a dragonfly wing. Exp. Mech. 50(9), 1323–1334 (2010)CrossRefGoogle Scholar
  20. 20.
    A.B. Kesel, Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils. J. Exp. Biol. 203(20), 3125–3135 (2000)Google Scholar
  21. 21.
    A.B. Kesel, U. Philippi, W. Nachtigall, Biomechanical aspects of the insect wing: an analysis using the finite element method. Comput. Biol. Med. 28(4), 423–437 (1998)CrossRefGoogle Scholar
  22. 22.
    M. Lee, Dragonfly wings: special structures for aerial acrobatics. in Remarkable Natural Material Surfaces and Their Engineering Potential (Springer International Publishing, Switzerland, 2014), pp. 65–77Google Scholar
  23. 23.
    S. Mukherjee, R. Ganguli, A dragonfly inspired flapping wing actuated by electro active polymers. Smart Struct. Syst. 6(7), 867–887 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Naka, Y. Sunami, H. Hashimoto, Development of the artificial wing suitable for flapping micro air vehicle based on dragonfly wing. The 3rd International Conference on Design Engineering and Science (ICDES 2014), Pilsen (2014)Google Scholar
  25. 25.
    T. Nakata, H. Liu, Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. Lond. B Biol. Sci. 279(1729), 722–731 (2012)CrossRefGoogle Scholar
  26. 26.
    D.J.S. Newman, R.J. Wootton, An approach to the mechanics of pleating in dragonfly wings. J. Exp. Biol. 125(1), 361–372 (1986)Google Scholar
  27. 27.
    R.A. Norberg, Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. in Swimming and Flying in Nature, ed. by T.Y.-T. Wu, C.J. Brokaw, C. Brennen (Springer, New York, 1975), pp. 763–781Google Scholar
  28. 28.
    M. Okamoto, K. Yasuda, A. Azuma, Aerodynamic characteristics of the wings and body of a dragonfly. J. Exp. Biol. 199(2), 281–294 (1996)Google Scholar
  29. 29.
    H. Rajabi, A. Darvizeh, Experimental investigations of the functional morphology of dragonfly wings. Chin. Phys. B 22(8), 088702 (2013)CrossRefADSGoogle Scholar
  30. 30.
    H. Rajabi, M. Moghadami, A. Darvizeh, Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing. J. Bionic Eng. 8(2), 165–173 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Rajabi, A. Darvizeh, A. Shafiei, D. Taylor, J.H. Dirks, Numerical investigation of insect wing fracture behaviour. J. Biomech. 48(1), 89–94 (2015)CrossRefGoogle Scholar
  32. 32.
    S.S. Rao, F.F. Yap, Mechanical Vibrations, vol. 4 (Addison-Wesley, New York, 1995)Google Scholar
  33. 33.
    C.J. Rees, Form and function in corrugated insect wings. Nature 256, 200–203 (1975)CrossRefADSGoogle Scholar
  34. 34.
    C.J. Rees, Aerodynamic properties of an insect wing section and a smooth aerofoil compare. Nature 258, 141–142 (1975)CrossRefADSGoogle Scholar
  35. 35.
    H.H. Ren, X.S. Wang, Y.L. Chen, X.D. Li, Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation. Chin. Phys. B 21(3), 034501 (2012)CrossRefADSGoogle Scholar
  36. 36.
    G. Rüppell, Kinematic analysis of symmetrical flight manoeuvres of Odonata. J. Exp. Biol. 144(1), 13–42 (1989)Google Scholar
  37. 37.
    G. Rüppell, D. Hilfert, The flight of the relict dragonfly Epiophlebia superstes (Selys) in comparison with that of the modern Odonata (Anisozygoptera: Epiophelebiidae). Odonatologica 22(3), 295–309 (1993)Google Scholar
  38. 38.
    F. Song, K.W. Xiao, K. Bai, Y.L. Bai, Microstructure and nanomechanical properties of the wing membrane of dragonfly. Mater. Sci. Eng., A 457(1), 254–260 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Sudo, K. Tsuyuki, T. Ikohagi, F. Ohta, S. Shida, J. Tani, A study on the wing structure and flapping behavior of a dragonfly. Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 42(3), 721–729 (1999)Google Scholar
  40. 40.
    J.Y. Sun, C.X. Pan, J. Tong, J. Zhang, Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings. Nanobiotechnology IET 4(1), 10–18 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Sunada, L. Zeng, K. Kawachi, The relationship between dragonfly wing structure and torsional deformation. J. Theor. Biol. 193(1), 39–45 (1998)CrossRefGoogle Scholar
  42. 42.
    M. Vanella, T. Fitzgerald, S. Preidikman, E. Balaras, B. Balachandran, Influence of flexibility on the aerodynamic performance of a hovering wing. J. Exp. Biol. 212(1), 95–105 (2009)CrossRefGoogle Scholar
  43. 43.
    J.F. Vincent, U.G. Wegst, Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33(3), 187–199 (2004)CrossRefGoogle Scholar
  44. 44.
    J.M. Wakeling, C.P. Ellington, Dragonfly flight. III. Lift and power requirements. J. Exp. Biol. 200(3), 583–600 (1997)Google Scholar
  45. 45.
    R.J. Wootton, Functional morphology of insect wings. Annu. Rev. Entomol. 37(1), 113–140 (1992)CrossRefGoogle Scholar
  46. 46.
    R.J. Wootton, K.E. Evans, R. Herbert, C.W. Smith, The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation. J. Exp. Biol. 203(19), 2921–2931 (2000)Google Scholar
  47. 47.
    K. Xiao, K. Bai, W. Wang, F. Song, Experimental study on the microstructure and nanomechanical properties of the wing membrane of dragonfly. Acta. Mech. Sin. 23(3), 281–285 (2007)CrossRefADSGoogle Scholar
  48. 48.
    L. Zeng, H. Matsumoto, S. Sunada, T. Ohnuki, K. Kawachi, Two-dimensional, noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor. Opt. Eng. 34(4), 1226–1231 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • H. Rajabi
    • 1
    • 2
  • M. Rezasefat
    • 2
  • A. Darvizeh
    • 2
  • J.-H. Dirks
    • 3
  • Sh. Eshghi
    • 4
  • A. Shafiei
    • 4
  • T. Mirzababaie Mostofi
    • 2
  • S. N. Gorb
    • 1
  1. 1.Functional Morphology and Biomechanics, Institute of ZoologyKiel UniversityKielGermany
  2. 2.Department of Mechanical EngineeringThe University of GuilanRashtIran
  3. 3.Department of New Materials and BiosystemsMax Planck Institute for Intelligent SystemsStuttgartGermany
  4. 4.Young Researchers and Elite Club, Lahijan BranchIslamic Azad UniversityLahijanIran

Personalised recommendations