Advertisement

Applied Physics A

, 122:114 | Cite as

Nanomaterials for the cleaning and pH adjustment of vegetable-tanned leather

  • Michele Baglioni
  • Angelica Bartoletti
  • Laurent Bozec
  • David Chelazzi
  • Rodorico Giorgi
  • Marianne Odlyha
  • Diletta Pianorsi
  • Giovanna Poggi
  • Piero Baglioni
Invited Paper
Part of the following topical collections:
  1. Sustainable solutions for restoration and conservation of cultural heritage

Abstract

Leather artifacts in historical collections and archives are often contaminated by physical changes such as soiling, which alter their appearance and readability, and by chemical changes which occur on aging and give rise to excessive proportion of acids that promote hydrolysis of collagen, eventually leading to gelatinization and loss of mechanical properties. However, both cleaning and pH adjustment of vegetable-tanned leather pose a great challenge for conservators, owing to the sensitivity of these materials to the action of solvents, especially water-based formulations and alkaline chemicals. In this study, the cleaning of historical leather samples was optimized by confining an oil-in-water nanostructured fluid in a highly retentive chemical hydrogel, which allows the controlled release of the cleaning fluid on sensitive surfaces. The chemical gel exhibits optimal viscoelasticity, which facilitates its removal after the application without leaving residues on the object. Nanoparticles of calcium hydroxide and lactate, dispersed in 2-propanol, were used to adjust the pH up to the natural value of leather, preventing too high alkalinity which causes swelling of fibers and denaturation of the collagen. The treated samples were characterized using scanning electron microscopy, controlled environment dynamic mechanical analysis, and infrared spectroscopy. The analytical assessment validated the use of tools derived from colloid and materials science for the preservation of collagen-based artifacts.

Keywords

Tannin Calcium Hydroxide Propylene Carbonate Nanoparticles Dispersion Calcium Lactate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

CSGI, MIUR, and European Union (project NANOFORART, FP7-ENV-NMP-2011/282816) are acknowledged for financial support.

References

  1. 1.
    M. Kite, R. Thomson, Conservation of Leather and Related Materials (Elsevier, Oxford, 2006)Google Scholar
  2. 2.
    P. Fratzl, Collagen: Structure and Mechanics (Springer, Berlin, 2008)CrossRefGoogle Scholar
  3. 3.
    R. Thomson, Leather, in Conservation Science: Heritage Materials, ed. by E. May, M. Jones (The Royal Society of Chemistry, Cambridge, 2006), p. 92Google Scholar
  4. 4.
    E. Haslam, Vegetable tannins, in Encyclopedia of Life Sciences (Wiley, 2001).  10.1038/npg.els.0001913
  5. 5.
    A.D. Covington, Tanning Chemistry: The Science of Leather (The Royal Society of Chemistry, Cambridge, 2009)Google Scholar
  6. 6.
    Improved Damage Assessment of Parchment—IDAP. Assessment, Data Collection and Sharing of Knowledge. European Commission Research Report No. 18. Edited by René Larsen, The Royal Danish Academy of Fine Arts, School of Conservation, Copenhagen, Denmark, © European Communities, 2007Google Scholar
  7. 7.
    K.M. Axelsson, R. Larsen, D. Sommer, J. Cult. Herit. 13, 128 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Giorgi, M. Baglioni, D. Berti, P. Baglioni, Acc. Chem. Res. 43, 695 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Baglioni, R. Giorgi, D. Berti, P. Baglioni, Nanoscale 4, 42 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    P. Baglioni, E. Carretti, D. Chelazzi, Nat. Nanotechnol. 10, 287 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Raudino, G. Selvolini, C. Montis, M. Baglioni, M. Bonini, D. Berti, P. Baglioni, A.C.S. Appl, Mater. Interfaces 7, 6244 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Domingues, N. Bonelli, R. Giorgi, P. Baglioni, Appl. Phys. A 114, 705 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J. Domingues, N. Bonelli, R. Giorgi, E. Fratini, F. Gorel, P. Baglioni, Langmuir 29, 2746 (2013)CrossRefGoogle Scholar
  14. 14.
    J.H. Bowes, R.H. Kenten, Biochem. J. 46, 1 (1950)CrossRefGoogle Scholar
  15. 15.
    R. Larsen, in Environment Leather Project. European Commission DG XII. Research Report No. 6 (The Royal Danish Academy of Fine Arts, School of Conservation, Copenhagen, 1996). ISBN 87 89730 07 0, p. 174Google Scholar
  16. 16.
    H. Benninga, A History of Lactic Acid Making: A Chapter in the History of Biotechnology (Springer, Berlin, 1990)Google Scholar
  17. 17.
    R. Giorgi, L. Dei, M. Ceccato, C. Schettino, P. Baglioni, Langmuir 18, 8198 (2002)CrossRefGoogle Scholar
  18. 18.
    R. Giorgi, D. Chelazzi, P. Baglioni, Langmuir 21, 10743 (2005)CrossRefGoogle Scholar
  19. 19.
    G. Poggi, R. Giorgi, N. Toccafondi, V. Katzur, P. Baglioni, Langmuir 26, 19084 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Poggi, N. Toccafondi, L.N. Melita, J.C. Knowles, L. Bozec, R. Giorgi, P. Baglioni, Appl. Phys. A 114, 685 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Hassan, S. Rana, G. Verma, Langmuir 31, 3 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Baglioni, D. Rengstl, D. Berti, M. Bonini, R. Giorgi, P. Baglioni, Nanoscale 2, 1723 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    G. Cassanas, M. Morssli, E. Fabrègue, L. Bardet, J. Raman Spectrosc. 22, 409–413 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Chen, Y. Lin, Z. Peng, J. Lin, J. Phys. Chem. C 114, 17720–17727 (2010)CrossRefGoogle Scholar
  25. 25.
    E. Malea, S.C. Boyatzis, M. Kehagia, Cleaning of tanned leather: testing with Infra Red spectroscopy and SEM-EDAX, in Joint Interim-Meeting of Five ICOM.CC Working Groups, Rome 2010, ed. by M. Paris (ICOM-CC, 2010), p. 1Google Scholar
  26. 26.
    Chemical testing of textiles, ed. by Q. Fan (Woodhead Publishing Limited in association with The Textile Institute, CRC Press, Boca Raton, 2005)Google Scholar
  27. 27.
    N.M. Puica, A. Pui, M. Florescu, Eur. J. Sci. Theol. 2(4), 49–53 (2006)Google Scholar
  28. 28.
    L. Falcão, M.E.M. Araùjo, J. Cult. Herit. 14, 499–508 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Odlyha, C. Theodorakoulos, J. de Groot, L. Bozec, M. Horton, Thermoanalytical (macro to nanoscale) techniques and non-invasive spectroscopic analysis for damage assessment of parchment, in Improved Damage Assessment of Parchment—IDAP. Assessment, Data Collection and Sharing of Knowledge. European Commission Research Report No. 18. Edited by René Larsen, The Royal Danish Academy of Fine Arts, School of Conservation, Copenhagen, Denmark, © European Communities, 2007, p. 73Google Scholar
  30. 30.
    M. Odlyha, C. Theodorakoulos, J. de Groot, L. Bozec, M. Horton, e-PS 6, 138–144 (2009)Google Scholar
  31. 31.
    V. Stefov, G. Jovanovski, B. Soptrajanov, B. Minceva-Sukarova, S. Dimitrovska, B. Boev, Geologica Macedonica 14, 61–66 (2000)Google Scholar
  32. 32.
    G. Anbalagan, S. Mukundakumari, K. Sakthi Murugesan, S. Gunasekaran, Vib. Spectrosc. 50, 226–230 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michele Baglioni
    • 1
  • Angelica Bartoletti
    • 3
  • Laurent Bozec
    • 3
  • David Chelazzi
    • 1
  • Rodorico Giorgi
    • 1
  • Marianne Odlyha
    • 2
  • Diletta Pianorsi
    • 1
  • Giovanna Poggi
    • 1
  • Piero Baglioni
    • 1
  1. 1.Department of Chemistry Ugo Schiff and CSGIUniversity of FlorenceSesto FiorentinoItaly
  2. 2.Department of Biological SciencesBirkbeck, University of LondonLondonUK
  3. 3.UCL Eastman Dental InstituteUniversity College LondonLondonUK

Personalised recommendations