Advertisement

Applied Physics A

, 121:2 | Cite as

Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

  • A. F. Kloutse
  • R. ZachariaEmail author
  • D. Cossement
  • R. Chahine
  • R. Balderas-Xicohténcatl
  • H. Oh
  • B. Streppel
  • M. Schlichtenmayer
  • M. Hirscher
Invited Paper

Abstract

Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric–volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin–Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal–organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models’ prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg−1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

Keywords

Hydrogen Adsorption Isosteric Heat Thermal Desorption Spectroscopy Excess Adsorption Explicit Analytical Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Canadian contribution is based on research financially supported by NSERC and Air Liquide. The German contribution was partially funded by the German Research Foundation (SPP 1362), the European Commission DG Research (SES6-2006-518271/NESSHY) and the European Hy-Co program, financed by the German Federal Ministry of Economics and Technology (BMWi).

Supplementary material

339_2015_9484_MOESM1_ESM.docx (1.2 mb)
Details of adsorption calorimetry, isosteric method, volume calibration and adsorption isotherms are available (DOCX 1249 kb)

References

  1. 1.
    J.K.N. Newhouse, in Proceedings of Annual Merit Review Meetings of US DOE (2014), http://www.hydrogen.energy.gov/pdfs/review14/st047_newhouse_2014_o.pdf
  2. 2.
    Y.-S. Bae, R.Q. Snurr, Microporous Mesoporous Mater. 132, 300 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Hardy, C. Corgnale, R. Chahine, M.-A. Richard, S. Garrison, D. Tamburello, D. Cossement, D. Anton, Int. J. Hydrogen Energy 37, 5691 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Ubaid, R. Zacharia, J. Xiao, R. Chahine, P. Bénard, P. Tessier, Int. J. Hydrogen Energy 40, 9314 (2015) Google Scholar
  5. 5.
    J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media (Kluwer Academic Publishers, The Netherlands, 1991)zbMATHGoogle Scholar
  6. 6.
    M.-A. Richard, D. Cossement, P.-A. Chandonia, R. Chahine, D. Mori, K. Hirose, AIChE J. 55, 2985 (2009)CrossRefGoogle Scholar
  7. 7.
    E. Dundar, R. Zacharia, R. Chahine, P. Benard, Fluid Phase Equilibr 363, 74 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Xiao, L. Tong, C. Deng, P. Bénard, R. Chahine, Int. J. Hydrogen Energy 35, 8106 (2010)CrossRefGoogle Scholar
  9. 9.
    L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38, 1294 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Purewal, D. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer, U. Müller, D.J. Siegel, J. Phys. Chem. C 116, 20199 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Dailly, J.J. Vajo, C.C. Ahn, J. Phys. Chem. B 2006, 110 (1099)Google Scholar
  12. 12.
    B. Panella, M. Hirscher, H. Pütter, U. Müller, Adv. Funct. Mater. 16, 520 (2006)CrossRefGoogle Scholar
  13. 13.
    B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, ChemPhysChem 9, 2181 (2008)CrossRefGoogle Scholar
  14. 14.
    W. Zhou, H. Wu, M.R. Hartman, T. Yildirim, J. Phys. Chem. C 111, 16131 (2007)CrossRefGoogle Scholar
  15. 15.
    S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129, 14176 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Schlichtenmayer, B. Streppel, M. Hirscher, Int. J. Hydrogen Energy 36, 586 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Ozawa, S. Kusumi, Y. Ogino, J. Colloid Interface Sci. 56, 83 (1976)CrossRefGoogle Scholar
  18. 18.
    A. Züttel, P. Sudan, P. Mauron, P. Wenger, Appl. Phys. A 78, 941 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    N.P. Stadie, Dissertation (Ph.D.), California Institute of Technology (2013)Google Scholar
  20. 20.
    J. Purewal, Dissertation (Ph.D.), California Institute of Technology (2010)Google Scholar
  21. 21.
    W. Zimmermann, J.U. Keller, Thermochim. Acta 405, 31 (2003)CrossRefGoogle Scholar
  22. 22.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, in NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2013 (National Institute of Standards and Technology, 2013)Google Scholar
  23. 23.
    P.B. Whittaker, X. Wang, K. Regenauer-Lieb, H.T. Chua, Phys. Chem. Chem. Phys. 15, 473 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Zacharia, D. Cossement, L. Lafi, R. Chahine, J. Mater. Chem. 20, 2145 (2010)CrossRefGoogle Scholar
  25. 25.
    E. Poirier, R. Chahine, P. Bénard, L. Lafi, G. Dorval-Douville, P.A. Chandonia, Langmuir 22, 8784 (2006)CrossRefGoogle Scholar
  26. 26.
    G. Dorval-Douville, Master Thesis, Université du Québec a trois rivieres (2006)Google Scholar
  27. 27.
    A. Mouahid, D. Bessieres, F. Plantier, G. Pijaudier-Cabot, J. Therm. Anal. Calorim. 2012, 109 (1077)Google Scholar
  28. 28.
    L.E. Vilchiz-Bravo, A. Pacheco-Vega, B.E. Handy, Meas. Sci. Technol. 21, 115103 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    L.E. Vilchiz, A. Pacheco-Vega, B.E. Handy, Thermochim. Acta 439, 110 (2005)CrossRefGoogle Scholar
  30. 30.
    J.A. Dunne, M. Rao, S. Sircar, R.J. Gorte, A.L. Myers, Langmuir 12, 5896 (1996)CrossRefGoogle Scholar
  31. 31.
    K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010)CrossRefGoogle Scholar
  32. 32.
    F.o. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications (Academic Press, San Diego, 1999)Google Scholar
  33. 33.
    M. Schlichtenmayer, M. Hirscher, J. Mater. Chem. 22, 10134 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Bourrelly, P.L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey, J. Am. Chem. Soc. 127, 13519 (2005)CrossRefGoogle Scholar
  35. 35.
    S. Maurice, Ph.D. Thesis, Max-Planck-Institut für Intelligente Systeme, Stuttgart (2012)Google Scholar
  36. 36.
    B. Panella, K. Hones, U. Muller, N. Trukhan, M. Schubert, H. Putter, M. Hirscher, Angew. Chem. Int. Edit. 47, 2138 (2008)CrossRefGoogle Scholar
  37. 37.
    I. Krkljus, M. Hirscher, Microporous Mesoporous Mater. 142, 725 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de recherche sur l’hydrogèneUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Max-Planck Institute for Intelligent SystemsStuttgartGermany

Personalised recommendations