Applied Physics A

, Volume 121, Issue 3, pp 1163–1169 | Cite as

High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser

  • Lingfei JiEmail author
  • Yan Hu
  • Jian Li
  • Wenhao Wang
  • Yijian Jiang


Circle and triangle micro-through-hole arrays without cracks, chips, and debris were machined in 0.3-mm-thick quartz glass by picosecond laser (wavelength = 1064 nm, pulse width ~12 ps) in air ambient. The diameter of each circle through-hole was 550 μm, and the side length of each triangle hole is 500 μm; 30 μm spacing between the adjacent hole edges and the smooth machined surface with R a = 0.8 μm roughness depicted the high precision of the high-density micro-through-hole arrays. The fundamental properties of the ps laser processing of quartz glass were investigated. The laser ablation threshold fluence of the quartz glass was determined as 3.49 J/cm2. Based on the fundamental investigation, a quantitative design of the cutting path for micro-machining of the through-holes with various geometries in quartz glass was developed. The work presents a more practical ps laser micro-machining technique for micro-through-hole arrays in glass-like materials for industrial application due to the precise quality, flexibility in geometries, ease of manipulation, and large-scale application.


Quartz Glass Groove Depth Exit Side Scanning Path Circular Groove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Science Foundation of China (51275011) and New Century Excellent Talents in University (NCET-10-0007). Acknowledgment is also made to Scientific Research Program of Beijing Municipal Commission of Education (KZ20131005005).


  1. 1.
    V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, P.L. Cavallotti, Appl. Phys. Lett. 88, 191107 (2006)CrossRefADSGoogle Scholar
  2. 2.
    S. Darvishi, T. Cubaud, J.P. Longtin, Opt. Laser. Eng. 50, 210 (2012)CrossRefGoogle Scholar
  3. 3.
    L. Brusberg, H. Schröder, M. Töpper, H. Reichl, in 11th Electronic Packaging Technology Conference (EPTC), (2009), p. 930Google Scholar
  4. 4.
    H. Schröder, L. Brusberg, R. Erxleben, I. Ndip, M. Töpper, N.F. Nissen, H. Reichl, in 60th Electronic Components and Technology Conference (ECTC), (2010), p. 1647Google Scholar
  5. 5.
    M. Töpper, I. Ndip, R. Erxleben, L. Brusberg, N. Nissen, H. Schröder, H. Yamamoto, G. Todt, H. Reichl, in 60th Electronic Components and Technology Conference (ECTC), (2010), p. 66Google Scholar
  6. 6.
    J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 69S, S879 (1999)CrossRefADSGoogle Scholar
  7. 7.
    S. Karimelahi, L. Abolghasemi, P.R. Herman, Appl. Phys. A 114, 91 (2014)CrossRefADSGoogle Scholar
  8. 8.
    A. Ostendorf, G. Kamlage, U. Klug, F. Korte, B.N. Chichkov, in SPIE, vol. 5713, (2005), p. 1Google Scholar
  9. 9.
    M.Y. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J.Q. Zhu, W.G. Schulz, in SPIE, vol. 8530, (2012), p. 853007-1Google Scholar
  10. 10.
    D. Ashkenasi, T. Kaszemeikat, N. Mueller, A. Lemke, H. J. Eichler, in SPIE, vol. 8243, (2012), p. 82430M-1Google Scholar
  11. 11.
    H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E.E.B. Campbell, Appl. Phys. A 65, 367 (1997)CrossRefADSGoogle Scholar
  12. 12.
    U. Englhardt, J. Hildenhagen, K. Dickmann, Laser Tech. J. 5, 32 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyė, M. Barkauskas, A. Alesenkov, V. Sirutkaitis, Appl. Phys. A 114, 81 (2014)CrossRefADSGoogle Scholar
  14. 14.
    F. Hendricks, J. Aus der Au, V.V. Matylitsky, Appl. Phys. A 117, 149 (2014)CrossRefADSGoogle Scholar
  15. 15.
    T. Temme, A. Ostendorf, C. Kulik, K. Meyer, in SPIE, vol. 4977, (2003), p. 555Google Scholar
  16. 16.
    J. Zhang, K. Sugioka, K. Midorikawa, Opt. Lett. 23, 1486 (1998)CrossRefADSGoogle Scholar
  17. 17.
    J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 67, 499 (1998)CrossRefADSGoogle Scholar
  18. 18.
    J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 67, 545 (1998)CrossRefADSGoogle Scholar
  19. 19.
    J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68, 111 (1999)CrossRefADSGoogle Scholar
  20. 20.
    X.M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, H. Niino, Langmuir 20, 9769 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Sato, R. Kurosaki, A. Narazaki, Y. Kawaguchi, H. Niino, in SPIE, vol. 7584, (2010), p. 758408-1Google Scholar
  22. 22.
    H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, Y. Kawaguchi, Appl. Phys. A 79, 827 (2004)CrossRefADSGoogle Scholar
  23. 23.
    H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, R. Kurosaki, Appl. Surf. Sci. 252, 4387 (2006)CrossRefADSGoogle Scholar
  24. 24.
    T. Sato, R. Kurosaki, A. Narazaki, Y. Kawaguchi, H. Niino, Appl. Phys. A 101, 319 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Y. Matsuoka, Appl. Phys. A 89, 457 (2007)CrossRefADSGoogle Scholar
  26. 26.
    L.T. Qi, K. Nishii, M. Yasui, H. Aoki, Y. Namba, Opt. Laser Eng. 48, 1000 (2010)CrossRefGoogle Scholar
  27. 27.
    D.W. Fradin, M. Bass, Appl. Phys. Lett. 22, 157 (1973)CrossRefADSGoogle Scholar
  28. 28.
    J.M. Liu, Opt. Lett. 7, 196 (1982)CrossRefADSGoogle Scholar
  29. 29.
    S.M. Eaton, H.B. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Opt. Express 13, 4708 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lingfei Ji
    • 1
    Email author
  • Yan Hu
    • 1
  • Jian Li
    • 1
  • Wenhao Wang
    • 1
  • Yijian Jiang
    • 1
  1. 1.Institute of Laser EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations