Applied Physics A

, Volume 121, Issue 3, pp 949–955 | Cite as

Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration

  • Claire Gervais
  • Mathieu Thoury
  • Solenn Réguer
  • Pierre Gueriau
  • Jennifer Mass
Invited Paper


High-flux synchrotron techniques allow microspectroscopic analyses of artworks that were not feasible even a few years ago, allowing for a more detailed characterization of their constituent materials and a better understanding of their chemistry. However, interaction between high-flux photons and matter at the sub-microscale can generate damages which are not visually detectable. We show here different methodologies allowing to evidence the damages induced by microscopic X-ray absorption near-edge structure spectroscopy analysis (\(\mu\)XANES) at the Fe and Zn K-edges of a painting dating from the turn of the twentieth century containing Prussian blue and zinc white. No significant degradation of the pigments was noticed, in agreement with the excellent condition of the painting. However, synchrotron radiation damages occurred at several levels, from chemical changes of the binder, modification of crystal defects in zinc oxide, to Prussian blue photoreduction. They could be identified by using both the \(\mu\)XANES signal during analysis and with photoluminescence imaging in the deep ultraviolet and visible ranges after analysis. We show that recording accurately damaged areas is a key step to prevent misinterpretation of results during future re-examination of the sample. We conclude by proposing good practices that could help in integrating radiation damage avoidance into the analytical pathway.


Radiation Damage Prussian Blue XANES Spectrum Paint Sample High Photon Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We warmly thank Christophe Sandt for assisting Raman spectroscopy measurements, Sebastian Schoeder for fruitful comments on the work and Valerio Cugia for having prepared the mock-up paint samples. Claire Gervais acknowledges the Swiss National Science Foundation for the professorship Grant No. 138986.


  1. 1.
    M. Cotte, J. Susini, J. Dik, K. Janssens, Acc. Chem. Res. 43(6), 705 (2010)CrossRefGoogle Scholar
  2. 2.
    L. Zanella, F. Casadio, Ka Gray, R. Warta, Q. Ma, J.F. Gaillard, J. Anal. At. Spectrom. 26(5), 1090 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Monico, K. Janssens, C. Miliani, G. Van der Snickt, B.G. Brunetti, M. Cestelli Guidi, M. Radepont, M. Cotte, Anal. chem. 85, 860 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Bertrand, M. Cotte, M. Stampanoni, M. Thoury, F. Marone, S. Schöder, Phys. Rep. 519, 51 (2012)CrossRefADSGoogle Scholar
  5. 5.
    M. van Schooneveld, S. DeBeer, J. Electron Spectrosc. Relat. Phenom. 198, 31 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Bertrand, S. Schoeder, D. Anglos, M. Breese, K. Janssens, M. Moini, A. Simon. Mitigation strategies for radiation damage in the analysis of ancient materials. Trends Anal. Chem. 66, 128–145 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Patten, L. Gonzalez, C. Kennedy, D. Mills, G. Davis, T. Wess, Herit. Sci. 1, 22 (2013)CrossRefGoogle Scholar
  8. 8.
    L. Samain, G. Silversmit, J. Sanyova, B. Vekemans, B. Gilbert, F. Grandjean, G.J. Long, P. Hermann, L. Vincze, D. Strivay, J. Anal. Atomic Spectrom. 26, 930 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Samain, B. Gilbert, F. Grandjean, G.J. Long, D. Strivay, J. Anal. Atomic Spectrom. 28, 524 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Newville, J. Synchrotron Radiat. 8, 322 (2001)CrossRefGoogle Scholar
  11. 11.
    C. Gervais, M.A. Languille, S. Reguer, M. Gillet, E.P. Vicenzi, S. Chagnot, F. Baudelet, L. Bertrand, Appl. Phys. A 111, 15 (2013)CrossRefADSGoogle Scholar
  12. 12.
    C. Gervais, M.A. Languille, G. Moretti, S. Reguer, Langmuir 31, 8168 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Decremps, F. Datchi, a. Saitta, a. Polian, S. Pascarelli, a. Di Cicco, J. Itié, F. Baudelet, Phys. Rev. B 68, 104101 (2003)Google Scholar
  14. 14.
    L. Bertrand, M. Refregiers, B. Berrie, J.P. Echard, M. Thoury, Analyst 138, 4463 (2013)CrossRefADSGoogle Scholar
  15. 15.
    A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)CrossRefGoogle Scholar
  16. 16.
    C. Gervais, M.A. Languille, S. Réguer, M. Gillet, S. Pelletier, C. Garnier, E.P. Vicenzi, L. Bertrand, J. Anal. Atomic Spectrom. 28, 1600 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Samain, F. Grandjean, G.J. Long, P. Martinetto, P. Bordet, D. Strivay, J. Phys. Chem. C 117, 9693 (2013)CrossRefGoogle Scholar
  18. 18.
    G. der Snickt, K. Janssens, J. Dik, W. De Nolf, F. Vanmeert, J. Jaroszewicz, M. Cotte, G. Falkenberg, L. der Loeff, Anal. Chem. 84, 10221 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claire Gervais
    • 1
  • Mathieu Thoury
    • 2
  • Solenn Réguer
    • 3
  • Pierre Gueriau
    • 3
  • Jennifer Mass
    • 4
  1. 1.Bern University of the ArtsBernSwitzerland
  2. 2.IPANEMA, USR 3461 CNRS/MCC, Synchrotron SOLEILGif-sur-YvetteFrance
  3. 3.Synchrotron SOLEILGif-sur-YvetteFrance
  4. 4.Conservation DepartmentWinterthur Museum and Country EstateWinterthurUSA

Personalised recommendations