Applied Physics A

, Volume 121, Issue 2, pp 505–511 | Cite as

Elasticity of the hair cover in air-retaining Salvinia surfaces

  • Petra Ditsche
  • Elena Gorb
  • Matthias Mayser
  • Stanislav Gorb
  • Thomas Schimmel
  • Wilhelm Barthlott
Invited Paper


Immersed in water superhydrophobic surfaces (e.g., lotus) maintain thin temporary air films. In certain aquatic plants and animals, these films are thicker and more persistent. Floating ferns of the genus Salvinia show elaborated hierarchical superhydrophobic surface structures: a hairy cover of complex trichomes. In the case of S. molesta, they are eggbeater shaped and topped by hydrophilic tips, which pin the air–water interface and prevent rupture of contact. It has been proposed that these trichomes can oscillate with the air–water interface, when turbulences occur and thereby stabilize the air film. The deformability of such arrays of trichomes requires a certain elasticity of the structures. In this study, we determined the stiffness of the trichome coverage of S. molesta and three other Salvinia species. Our results confirm the elasticity of the trichome coverage in all investigated Salvinia species. We did not reveal a clear relationship between the time of air retention and stiffness of the trichome coverage, which means that the air retention function is additionally dependent on different parameters, e.g., the trichome shape and surface free energy. These data are not only interesting for Salvinia biology, but also important for the development of biomimetic air-retaining surfaces.


Indentation Depth Superhydrophobic Surface Lanthanum Hexaboride Multicellular Trichome Elastic Force Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the German Federal Ministry of Education and Research BMBF for the financial support of this BIONA-project (project 01RB0803A) to WB. We acknowledge the Botanical Gardens of the University of Bonn for the cultivation and supply of living plant material and Matthias Mail for some comments to this manuscript. This study was partly supported by the SPP 1420 priority program of the German Science Foundation (DFG) “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” (project GO 995/9-2) to SG.


  1. 1.
    W. Barthlott, N. Ehler, Tropische und Subtropische Pflanzenwelt 19, 367 (1977)Google Scholar
  2. 2.
    W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)CrossRefGoogle Scholar
  3. 3.
    K. Koch, H.F. Bohn, W. Barthlott, Langmuir 25, 14116 (2009)CrossRefGoogle Scholar
  4. 4.
    Y.Y. Yan, N. Gao, W. Barthlott, Adv. Colloid Interface 169, 80 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, Bioinspir. Biomim. 2, 126 (2007)CrossRefADSGoogle Scholar
  6. 6.
    A. Balmert, H.F. Bohn, P. Ditsche-Kuru, W. Barthlott, J. Morphol. 272, 442 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Ditsche-Kuru, E. Schneider, J.-E. Melskotte, M. Brede, A. Leder, W. Barthlott, Beilstein J. Nanotechnol. 2, 137 (2011)CrossRefGoogle Scholar
  8. 8.
    W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Wahlheim, A. Weis, A. Kaltenmaier, Y.A. Leder, H.F. Bohn, Adv. Mater. 22, 2325 (2010)CrossRefGoogle Scholar
  9. 9.
    G. McHale, M.I. Newton, N.J. Shirtcliffe, Soft Matter 6, 714 (2010)CrossRefADSGoogle Scholar
  10. 10.
    J.E. Melskotte, M. Brede, A. Wolter, W. Barthlott, A. Leder, in Lasermethoden in der Strömungsmesstechnik, 21. Fachtagung, 3–5. September 2013, München; (Tagungsband) ed by C.J. Kähler, R. Hainz, C. Cierpka, B. Ruck, A. Leder, D. Dopheide (Karlsruhe, Dt. Ges. Für Laser-Anemometrie GALA e.V.), p. 53-1Google Scholar
  11. 11.
    D. Gandyra, S. Wahlheim, S. Gorb, W. Barthlott, T. Schimmel, Beilstein J. Nanotechnol. 6, 11 (2015)CrossRefGoogle Scholar
  12. 12.
    A.K. Balasubramanian, A.C. Miller, AIAA J. 42, 411 (1999)CrossRefADSGoogle Scholar
  13. 13.
    W. Barthlott, S. Wiersch, Z. Colic, K. Koch, Botany 87, 830 (2009)CrossRefGoogle Scholar
  14. 14.
    E. Gorb, V. Kastner, A. Peressadko, E. Arzt, L. Gaume, N. Rowe, S: Gorb. J. Exp. Biol. 207, 2947 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Gorb, Y. Jiao, M. Scherge, J. Comput. Physiol. A 186, 821 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Jiao, S. Gorb, M. Scherge, J. Exp. Biol. 203, 1887 (2000)Google Scholar
  17. 17.
    M.J. Mayser, H.F. Bohn, M. Reker, W. Barthlott, Beilstein J. Nanotechnol. 5, 812 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Mayser, Doctoral Dissertation, Universitäts-und Landesbibliothek Bonn, 2013Google Scholar
  19. 19.
    Z. Cerman, B. Striffler, W. Barthlott, in Functional Surfaces in Biology, vol. 1, ed by S. Gorb, (Springer, Berlin, 2009), p. 97Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Petra Ditsche
    • 1
    • 2
    • 3
  • Elena Gorb
    • 2
  • Matthias Mayser
    • 1
    • 5
  • Stanislav Gorb
    • 2
  • Thomas Schimmel
    • 4
  • Wilhelm Barthlott
    • 1
  1. 1.Nees Institute for Biodiversity of PlantsUniversity of BonnBonnGermany
  2. 2.Department of Functional Morphology and BiomechanicsZoological Institute of the University of KielKielGermany
  3. 3.Friday Harbor LaboratoriesUniversity of WashingtonFriday HarborUSA
  4. 4.Institute of Applied Physics and Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  5. 5.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations