Advertisement

Applied Physics A

, Volume 121, Issue 1, pp 1–9 | Cite as

Toward laser welding of glasses without optical contacting

  • S. RichterEmail author
  • F. Zimmermann
  • R. Eberhardt
  • A. Tünnermann
  • S. Nolte
Invited Paper

Abstract

The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to \(10\,\upmu \hbox {J}\). The laser-induced welding seams exhibit a base area with a size of up to \(450\,\upmu \hbox {m}\,\times 160\,\upmu \hbox {m}\). Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about \(3\,\upmu \hbox {m}\). Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.

Keywords

Welding Breaking Strength Laser Welding Molten Pool Welding Seam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support is gratefully acknowledged by the IGF project Opti-Bond (number 186530 BR). We thank T. Käsebier (FSU Jena) for the realization of the step index profile. We also acknowledge the help of K. Jorcke (Fraunhofer IOF Jena) for the three-point bending test. We thank M. Lancry (Université Paris Sud) for the fruitful discussion.

References

  1. 1.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bull. 31, 620 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)CrossRefADSGoogle Scholar
  3. 3.
    C.B. Schaffer, J.F. Garcia, E. Mazur, Appl. Phys. A 76, 351 (2003)CrossRefADSGoogle Scholar
  4. 4.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)CrossRefADSGoogle Scholar
  5. 5.
    M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, App. Phys. Lett. 98(20), 201101 (2011)CrossRefADSGoogle Scholar
  6. 6.
    L.P.R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A.V. Korovin, U. Peschel, S. Nolte, A. Tünnermann, Appl. Phys. A 100, 1 (2010)CrossRefADSGoogle Scholar
  7. 7.
    J. Zhang, M. Gecevicius, M. Beresna, P.G. Kazansky, Phys. Rev. Lett. 112(3), 033901 (2014)CrossRefADSGoogle Scholar
  8. 8.
    C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A 84(1–2), 47–61 (2006)CrossRefADSGoogle Scholar
  9. 9.
    W. Watanabe, T. Toma, K. Yamada, J. Nishii, K.I. Hayashi, K. Itoh, Opt. Lett. 25(22), 1669–1671 (2000)CrossRefADSGoogle Scholar
  10. 10.
    S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, B. Luther-Davies, Appl. Phys. Lett. 88, 201909 (2006)CrossRefADSGoogle Scholar
  11. 11.
    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Appl. Phys. Lett. 89(2), 021106 (2006)CrossRefADSGoogle Scholar
  12. 12.
    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Appl. Phys. B 87(1), 85–89 (2007)CrossRefADSGoogle Scholar
  13. 13.
    S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Exp. 13(12), 4708–4716 (2005)CrossRefADSGoogle Scholar
  14. 14.
    C.B. Schaffer, J.F. García, E. Mazur, Appl. Phys. A 76(3), 351–354 (2003)CrossRefADSGoogle Scholar
  15. 15.
    I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, F. Yoshino, J. Laser Micro. Nanoen. 60(3–4), 59–66 (2007)Google Scholar
  16. 16.
    D. Helie, M. Begin, F. Lacroix, R. Vallee, Appl. Opt. 51(12), 2098–2106 (2012)CrossRefADSGoogle Scholar
  17. 17.
    S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 103(2), 257–261 (2011)CrossRefADSGoogle Scholar
  18. 18.
    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Appl. Phys. B 87(1), 85–89 (2006)CrossRefADSGoogle Scholar
  19. 19.
    I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, H. Helvajian, Opt. Exp. 19(23), 22961–22973 (2011)CrossRefADSGoogle Scholar
  20. 20.
    S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 110(1), 9–15 (2013)CrossRefADSGoogle Scholar
  21. 21.
    F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Opt. 52(6), 1149–1154 (2013)CrossRefADSGoogle Scholar
  22. 22.
    K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, M. Schmidt, Appl. Opt. 50(13), 1941–1944 (2011)CrossRefADSGoogle Scholar
  23. 23.
    K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, M. Schmidt, Opt. Exp. 23(5), 5681–5693 (2015)CrossRefADSGoogle Scholar
  24. 24.
    S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, S. Nolte, Opt. Exp. 21(13), 15452–15463 (2013)CrossRefADSGoogle Scholar
  25. 25.
    K. Cvecek, I. Miyamoto, M. Schmidt, Opt. Exp. 22(13), 15877–15893 (2014)CrossRefADSGoogle Scholar
  26. 26.
    F. Kherbouche, B. Poumellec, J. Opt. A Pure Appl. Opt. 3(6), 429 (2001)CrossRefADSGoogle Scholar
  27. 27.
    S. Richter, F. Hashimoto, F. Zimmermann, Y. Ozeki, K. Itoh, A. Tünnermann, S. Nolte, Proc. SPIE 9355, 935515 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Champion, Y. Bellouard, Opt. Mater. Express 2(6), 789–798 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Richter
    • 1
    Email author
  • F. Zimmermann
    • 1
  • R. Eberhardt
    • 2
  • A. Tünnermann
    • 1
    • 2
  • S. Nolte
    • 1
    • 2
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-UniversitätJenaGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations