Applied Physics A

, Volume 121, Issue 3, pp 857–868 | Cite as

Organogel formulations for the cleaning of easel paintings

  • Piero Baglioni
  • Nicole Bonelli
  • David Chelazzi
  • Aurelia Chevalier
  • Luigi Dei
  • Joana Domingues
  • Emiliano Fratini
  • Rodorico Giorgi
  • Morgane Martin
Invited Paper


Gels are particularly useful for the cleaning of works of art, as they allow the controlled delivery of cleaning fluids on solvent-sensitive substrates such as easel paintings. Owing to the presence of covalent cross-links between the polymer chains, chemical gels exhibit mechanical properties that allow their easy handling and their residue-free removal from artistic surfaces after the cleaning intervention. Organogels based on the cross-linking of methyl methacrylate (MMA) can be prepared as loaded with solvents for the controlled removal of unwanted layers from the surface of canvas paintings. Here, we propose MMA-based organogels obtained by solubilizing MMA in pure organic solvents (e.g., ethyl acetate, butyl acetate and ketones) and using a dimethacrylate cross-linker. The uptake/release behavior of the gels has been investigated, and their mesoporosity has been characterized through small-angle X-ray scattering. Finally, the gels have been used for the removal of historical varnishes from canvas painting samples, checking the absence of gel residues with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).


PMMA Methyl Ethyl Ketone HALS Butyl Acetate Free Solvent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CSGI, MIUR and European Union (Project NANOFORART, FP7-ENV-NMP-2011/282816) are acknowledged for financial support.


  1. 1.
    P. Dietemann, C. Higitt, M. Kälin, M.J. Edelmann, R. Knochenmuss, R. Zenobi, J. Cult. Herit. 10, 30 (2009)CrossRefGoogle Scholar
  2. 2.
    R. Howells, A. Burnstock, G. Hedley, S. Hackney, in Adhesives and Consolidants, ed. by N.S. Brommelle, E.M. Pye, P. Smith, G. Thomson (IIC, London, 1984)Google Scholar
  3. 3.
    J.L. Down, M.A. MacDonald, J. Tétreault, R. Scott Williams, Stud. Conserv. 41(1), 19 (1996)Google Scholar
  4. 4.
    D. Chelazzi, A. Chevalier, G. Pizzorusso, R. Giorgi, M. Menu, P. Baglioni, Polym. Degrad. Stab. 107, 314 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Casoli, Z. Di Diego, C. Isca, Environ. Sci. Pollut. Res. 21(23), 13252 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Baglioni, D. Chelazzi, R. Giorgi, Nanotechnologies in the Conservation of Cultural Heritage (Springer, Dordrecht, 2015), pp. 98–99Google Scholar
  7. 7.
    E. Carretti, S. Grassi, M. Cossalter, I. Natali, G. Caminati, R.G. Weiss, P. Baglioni, L. Dei, Langmuir 25, 8656 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Burnstock, T. Kieslish, in Proceedings of ICOM Committee for Conservation, 11th Triennal Meeting in Edimburgh, Scotland (James & James, London, Sept. 1–6, 1996) p. 253Google Scholar
  9. 9.
    A. Burnstock, R. White, in Tradition and Innovation: Advances in Conservation, Contributions to the Melbourne Congress, 10–14 Oct 2000 (IIC), p. 38Google Scholar
  10. 10.
    D. Stulik, D. Miller, H. Khanjian, N. Khandekar, R. Wolbers, J. Carlson, W. Christian Petersen, in Solvent Gels for the Cleaning of Works of Art: The Residue Question, ed. by V. Dorge (Getty Publications, Los Angeles, 2004)Google Scholar
  11. 11.
    G. Pizzorusso, E. Fratini, J. Eiblmeier, R. Giorgi, D. Chelazzi, A. Chevalier, P. Baglioni, Langmuir 28, 3952 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Domingues, N. Bonelli, R. Giorgi, E. Fratini, F. Gorel, P. Baglioni, Langmuir 29, 2746 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Domingues, N. Bonelli, R. Giorgi, P. Baglioni, Appl. Phys. A 114, 705 (2014)CrossRefADSGoogle Scholar
  14. 14.
    S. Pajevic, R. Bansil, C. Konak, Macromolecules 26, 305 (1993)CrossRefADSGoogle Scholar
  15. 15.
    Ö. Pekcan, D. Kaya, M. Erdogan, Polymer 41, 4915 (2000)CrossRefGoogle Scholar
  16. 16.
    H.J. Naghash, J. Appl. Polym. Sci. 116, 2465 (2010)CrossRefGoogle Scholar
  17. 17.
    T. Blanton, T. Huang, H. Toraya, C.R. Hubbard, S.B. Robie, D. Louer, H.E. Gobel, G. Will, R. Gilles, T. Raftery, Powder Diffr. 10, 91 (1995)CrossRefADSGoogle Scholar
  18. 18.
    J.A. Lake, Acta Crystallogr. 23, 191 (1967)CrossRefGoogle Scholar
  19. 19.
    J. Whitten, AIC postprints, American Institute for Conservation 23rd Annual Meeting, St. Paul, Minn. AIC, Washington DC, p. 124Google Scholar
  20. 20.
    P.L. Ritger, N.A. Peppas, J. Control. Release 5, 37 (1987)CrossRefGoogle Scholar
  21. 21.
    J. Siepmann, N.A. Peppas, Adv. Drug Deliv. Rev. 48, 139 (2001)CrossRefGoogle Scholar
  22. 22.
    K. Kosmidis, E. Rinaki, P. Argyrakis, P. Macheras, Int. J. Pharm. 254, 183 (2003)CrossRefGoogle Scholar
  23. 23.
    T. Alfrey, E.F. Gurnee, W.G. Lloyd, J. Polym. Sci. Part C Polym. Symp. 12, 249 (1966)CrossRefGoogle Scholar
  24. 24.
    P. Debye, A.M. Beuche, J. Appl. Phys. 20, 518 (1949)CrossRefADSGoogle Scholar
  25. 25.
    T. Canal, N.A. Peppas, J. Biomed. Mater. Res. A 23, 1183 (1989)CrossRefGoogle Scholar
  26. 26.
    F. Ikkai, M. Shibayama, J. Polym. Sci. Part B Polym. Phys. 43, 617 (2005)CrossRefADSGoogle Scholar
  27. 27.
    S. Panyukov, Y. Rabin, Phys. Rep. 269, 1 (1996)CrossRefADSGoogle Scholar
  28. 28.
    L. Benguigui, F. Boue, EPJB 11, 439 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Piero Baglioni
    • 1
  • Nicole Bonelli
    • 1
  • David Chelazzi
    • 1
  • Aurelia Chevalier
    • 2
  • Luigi Dei
    • 1
  • Joana Domingues
    • 1
  • Emiliano Fratini
    • 1
  • Rodorico Giorgi
    • 1
  • Morgane Martin
    • 2
  1. 1.Department of Chemistry Ugo Schiff and CSGIUniversity of FlorenceSesto FiorentinoItaly
  2. 2.Atelier Aurelia ChevalierParisFrance

Personalised recommendations