Applied Physics A

, Volume 120, Issue 3, pp 1197–1203 | Cite as

Implementation of graphene multilayer electrodes in quantum dot light-emitting devices

  • Svenja WolffEmail author
  • Dennis Jansen
  • Hendrik Terlinden
  • Yusuf Kelestemur
  • Wolfgang Mertin
  • Hilmi Volkan Demir
  • Gerd Bacher
  • Ekaterina Nannen


Graphene is a highly attractive candidate for implementation as electrodes in next-generation large-area optoelectronic devices thanks to its high electrical conductivity and high optical transparency. In this study, we show all-solution-processed quantum dot-based light-emitting devices (QD-LEDs) using graphene mono- and multilayers as transparent electrodes. Here, the effect of the number of graphene layers (up to three) on the QD-LEDs performance was studied. While the implementation of a second graphene layer was found to reduce the turn-on voltage from 2.6 to 1.8 V, a third graphene layer was observed to increase the turn-on voltage again, which is attributed to an increased roughness of the graphene layer stack.


Sheet Resistance Graphene Layer Bilayer Graphene Reference Device Graphene Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to S. Sanders, J. Frohleiks, J. Rest and K. Dunkhorst for support and assistance with the experiments. We kindly acknowledge financial support of the University Duisburg-Essen and OSRAM GmbH. Y.K and H.V.D acknowledge financial supports from ESF EURYI, EU FP7 Network of Excellence “Nanophotonics for Energy Efficiency (N4E) and TUBA—Turkish Academy of Sciences”.


  1. 1.
    N. Thejo Kalyani, S.J. Dhoble, Renew. Sustain. Energy Rev. 16(5) (2012)Google Scholar
  2. 2.
    C. Altavilla, E. Ciliberto, in Inorganic Nanoparticles: Synthesis, Applications, nd Perspectives, ed. by E. Neshataeva, T. Kümmell, G. Bacher, (CRC Press, 2010), pp. 109–132Google Scholar
  3. 3.
    J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Opt. Mater. Express 2, 5 (2012)CrossRefGoogle Scholar
  4. 4.
    S. De, J.N. Coleman, ACS Nano 4, 5 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 1 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Q. Zhang, Y. Di, C.M. Huard, L.J. Guo, J. Wei, J. Guo, J. Mater. Chem. C 3, 7 (2015)Google Scholar
  7. 7.
    Y. Galagan, J.-E.J.M. Rubingh, R. Andriessen, C.-C. Fan, P.W.M. Blom, S.C. Veenstra, J.M. Kroon, Sol. Energy Mater. Sol. Cells 95, 5 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Pang, Y. Hernandez, X. Feng, K. Müllen, Adv. Mater. 23, 25 (2011)CrossRefGoogle Scholar
  9. 9.
    T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B.H. Hong, J.-H. Ahn, T.-W. Lee, Nat. Photonics 6, 2 (2012)CrossRefGoogle Scholar
  10. 10.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, L.V. Grigorieva, A.A. Firsov, Science 306, 5696 (2004)CrossRefGoogle Scholar
  11. 11.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 5887 (2008)Google Scholar
  12. 12.
    F. Güneş, H.-J. Shin, C. Biswas, G.H. Han, E.S. Kim, S.J. Chae, J.-Y. Choi, Y.H. Lee, ACS Nano 4, 8 (2010)Google Scholar
  13. 13.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 8 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 9 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Han, L. Zhang, X. Zhang, K. Ruan, L. Cui, Y. Wang, L. Liao, Z. Wang, J. Jie, J. Mater. Chem. C 2, 1 (2014)ADSGoogle Scholar
  16. 16.
    J. Meyer, P.R. Kidambi, B.C. Bayer, C. Weijtens, A. Kuhn, A. Centeno, A. Pesquera, A. Zurutuza, J. Robertson, S. Hofmann, Sci. Rep. 4, 5380 (2014)ADSGoogle Scholar
  17. 17.
    J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Appl. Phys. Lett. 92, 26 (2008)Google Scholar
  18. 18.
    J. Guo, C.M. Huard, Y. Yang, Y.J. Shin, K.-T. Lee, L.J. Guo, Adv. Opt. Mater. 2, 5 (2014)ADSGoogle Scholar
  19. 19.
    P. Matyba, H. Yamaguchi, M. Chhowalla, N.D. Robinson, L. Edman, ACS Nano 5, 1 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, N.D. Robinson, ACS Nano 4, 2 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Nat. Photonics 7, 1 (2012)CrossRefGoogle Scholar
  22. 22.
    A.V. Klekachev, S.N. Kuznetsov, I. Asselberghs, M. Cantoro, J. Hun Mun, B. Jin Cho, A.L. Stesmans, M.M. Heyns, S. De Gendt, Appl. Phys. Lett. 103(4), 1 (2013)CrossRefGoogle Scholar
  23. 23.
    J.-T. Seo, J. Han, T. Lim, K.-H. Lee, J. Hwang, H. Yang, S. Ju, ACS Nano 8, 12 (2014)Google Scholar
  24. 24.
    L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, W.W. Yu, Nanotechnology 26, 13 (2015)Google Scholar
  25. 25.
    J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee, C. Lee, Nano Lett. 12, 5 (2012)CrossRefGoogle Scholar
  26. 26.
    L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Nat. Photonics 5, 9 (2011)CrossRefGoogle Scholar
  27. 27.
    B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, P.T. Kazlas, Nat. Photonics 7, 5 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 1 (2009)CrossRefGoogle Scholar
  29. 29.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 7230 (2009)Google Scholar
  30. 30.
    W. Regan, N. Alem, B. Alemán, B. Geng, Ç. Girit, L. Maserati, F. Wang, M. Crommie, A. Zettl, Appl. Phys. Lett. 96, 11 (2010)CrossRefGoogle Scholar
  31. 31.
    J.A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, D. Snyder, Appl. Phys. Lett. 98, 5 (2011)Google Scholar
  32. 32.
    O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Nat. Mater. 12 (2013)Google Scholar
  33. 33.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 18 (2006)Google Scholar
  34. 34.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 5932 (2009)Google Scholar
  35. 35.
    X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Nano Lett. 9(12), 4359–4363 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    W.K. Bae, J. Kwak, J.W. Park, K. Char, C. Lee, S. Lee, Adv. Mater. 21, 17 (2009)CrossRefGoogle Scholar
  37. 37.
    G.J. Supran, K.W. Song, G.W. Hwang, R.E. Correa, J. Scherer, E.A. Dauler, Y. Shirasaki, M.G. Bawendi, V. Bulović, Adv. Mater. 27, 8 (2015)CrossRefGoogle Scholar
  38. 38.
    Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Nat. Photonics 1, 12 (2007)CrossRefGoogle Scholar
  39. 39.
    H.V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, A. Eychmüller, Nano Today 6, 6 (2011)CrossRefGoogle Scholar
  40. 40.
    E. O’Connor, A. O’Riordan, H. Doyle, S. Moynihan, A. Cuddihy, G. Redmond, Appl. Phys. Lett. 86, 20 (2005)Google Scholar
  41. 41.
    N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 295, 5559 (2002)CrossRefGoogle Scholar
  42. 42.
    B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, M.F. Rubner, Appl. Phys. Lett. 66, 11 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Svenja Wolff
    • 1
    • 2
    Email author
  • Dennis Jansen
    • 1
    • 2
  • Hendrik Terlinden
    • 1
    • 2
  • Yusuf Kelestemur
    • 3
  • Wolfgang Mertin
    • 2
  • Hilmi Volkan Demir
    • 3
    • 4
  • Gerd Bacher
    • 2
  • Ekaterina Nannen
    • 1
    • 2
  1. 1.Research Group “Solid State Lighting”, NanoEnergieTechnikZentrumUniversity Duisburg-EssenDuisburgGermany
  2. 2.Werkstoffe der Elektrotechnik and CENIDEUniversität Duisburg-EssenDuisburgGermany
  3. 3.Department of Electrical and Electronics Engineering, Department of Physics, UNAM – Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  4. 4.Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations