Applied Physics A

, Volume 120, Issue 3, pp 933–939 | Cite as

Tunable emission and the systematic study on energy-transfer properties of Ce3+- and Tb3+-co-doped Sr3(PO4)2 phosphors

  • Zhijun LiuEmail author


An emitting color tunable phosphor Sr3(PO4)2:Ce3+, Tb3+ was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce3+- and Tb3+-doped Sr3(PO4)2 host were studied in detail. The obtained phosphors show both a blue emission from Ce3+ and a yellowish green emission from Tb3+ with considerable intensity under ultraviolet (UV) excitation (~311 nm). When the content of Ce3+ was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb3+ ions with the aid of ET process. The critical distance between Ce3+ and Tb3+ is 14.69 Å. The ET mechanism from Ce3+ to Tb3+ ions was identified with dipole–dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce3+ to Tb3+ ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices.


Excited Electron Broad Emission Band Multipolar Interaction Emission Intensity Ration Weak Reduce Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support from the Department of Guangdong Province Special Combination of Project Funding (No. 2011B090300053).


  1. 1.
    M. Seibald, T. Rosenthal, O. Oeckler, C. Maak, A. Tücks, P.J. Schmidt, D. Wiechert, W. Schnick, Chem. Mater. 25, 1852 (2013)CrossRefGoogle Scholar
  2. 2.
    C.-H. Huang, T.-W. Kuo, T.-M. Chen, Opt. Express 19, A1 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Chen, J. Wang, C.M. Liu, X.J. Kuang, Q. Su, Appl. Phys. Lett. 98, 081917 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Y.H. Jin, Y.H. Hu, X.J. Wang, G.F. Ju, Z.F. Mu, J. Am. Ceram. Soc. 96, 3821 (2013)CrossRefGoogle Scholar
  5. 5.
    D.L. Geng, M.M. Shang, Y. Zhang, H.Z. Lian, J. Lin, Inorg. Chem. 52, 13708 (2013)CrossRefGoogle Scholar
  6. 6.
    W.-R. Liu, C.-H. Huang, C.-W. Yeh, Y.-C. Chiu, Y.-T. Yeh, R.-S. Liu, RSC Adv. 3, 9023 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, Nat. Mater. 13, 894 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Chem. Mater. 17, 3242 (2005)CrossRefGoogle Scholar
  9. 9.
    A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R.G. Chandran, M.V. Shankar, Chem. Mater. 18, 3314 (2006)CrossRefGoogle Scholar
  10. 10.
    G.-Y. Lee, J.Y. Han, W.B. Im, S.H. Cheong, D.Y. Jeon, Inorg. Chem. 51, 10688 (2012)CrossRefGoogle Scholar
  11. 11.
    Z.G. Xia, R.-S. Liu, J. Phys. Chem. C 116, 15604 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.H. Jin, Y.H. Hu, L. Chen, X.J. Wang, G.F. Ju, Z.F. Mu, J. Lumin. 138, 83–88 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Nigam, V. Sudarsan, R.K. Vatsa, J. Ghattak, P.V. Satyam, J. Phys. Chem. C 113, 8750–8755 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.H. Jin, Y.H. Hu, Mater. Res. Bull. 61, 16 (2015)CrossRefGoogle Scholar
  15. 15.
    Z.-Y. Mao, Y.-C. Zhu, Y. Zeng, L. Gan, Y. Wang, J. Lumin. 43, 587 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.H. Jin, Y.H. Hu, J. Alloys Compd. 610, 695 (2014)CrossRefGoogle Scholar
  17. 17.
    J.M. Ogiegło, A. Zych, K.V. Ivanovskikh, T. Jüstel, C.R. Ronda, A. Meijerink, J. Phys. Chem. A 116, 8464 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Han, J. Zhang, Y.H. Lü, J. Am. Ceram. Soc. 96, 179 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.H. Jin, Y.H. Hu, L. Chen, X.J. Wang, Z.F. Mu, G.F. Ju, Z.F. Yang, Phys. B 436, 105 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A. Nohara, S. Takeshita, T. Isobe, RSC Adv. 4, 11219 (2014)CrossRefGoogle Scholar
  21. 21.
    J.Y. Sun, Y.N. Sun, J.H. Zeng, H.Y. Du, J. Phys. Chem. Solids 74, 1007 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    C.F. Guo, L. Luan, X. Ding, D. Huang, Appl. Phys. A 91, 327 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    T.P.J. Botden, F.A. Kröger, Physica 14, 553 (1948)ADSCrossRefGoogle Scholar
  24. 24.
    W.J. Yang, T.M. Chen, Appl. Phys. Lett. 88, 101903 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    C. Parent, G. Le Flem, M. Et-Tabirou, A. Daoudi, Solid State Commun. 37, 857 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  27. 27.
    C.-K. Chang, T.-M. Chen, Appl. Phys. Lett. 91, 081902 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    C.-H. Huang, T.-M. Chen, J. Phys. Chem. C 115, 2349 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.-C. Chiu, W.-R. Liu, C.-H. Huang, Y.-T. Yeh, S.-M. Jang, Opt. Express 20, 27361 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    G. Blasse, J. Solid State Chem. 62, 207 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    Y.C. Jia, H. Qiao, Y.H. Zheng, N. Guo, H.P. You, Phys. Chem. Chem. Phys. 14, 3537 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Shipping EngineeringGuangzhou Maritime InstituteGuangzhouChina

Personalised recommendations