Applied Physics A

, Volume 121, Issue 2, pp 343–356 | Cite as

A step toward next-generation nanoimprint lithography: extending productivity and applicability

Invited Paper


Because of its unique principle based on mechanical deformation, nanoimprint lithography (NIL) has been playing an important role for nanopatterning and nanofabrication beyond the limit of conventional optical lithography. Many diverse fields involving electronics, photonics, and energy engineering have all shown significant increase in utilization of nanopattern structures, particularly in large areas and at submicron scales. To meet this demand, expanding the realm of NIL toward more scalable and versatile patterning technology is in high demand. In this feature article, we give an overview of how NIL can extend productivity and applicability by addressing three key issues: continuous NIL for more scalable nanopatterning, large-area mold fabrications, and novel resist engineering.



This work was supported by the NSF grant CMMI 1025020 through the subcontract from University of Massachusetts, Amherst. JGO acknowledges the support by the Research Program funded by the Seoul National University of Science and Technology. HJP acknowledges the support by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), and the support by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2056403). YJS acknowledges the support by Multidisciplinary University Research Initiatives (MURI) Program and Korean Pioneer Project funded by the National Research Foundation of Korea (NRF).


  1. 1.
    L.J. Guo, Adv. Mater. 19(4), 495 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Schift, J. Vac. Sci. Technol. B 26(2), 458 (2008)CrossRefGoogle Scholar
  3. 3.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272(5258), 85 (1996)CrossRefADSGoogle Scholar
  4. 4.
    H.C. Scheer, N. Bogdanski, M. Wissen, S. Mollenbeck, Microelectron. Eng. 85(5–6), 890 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Bender, A. Fuchs, U. Plachetka, H. Kurz, Microelectron. Eng. 83(4–9), 827 (2006)CrossRefGoogle Scholar
  6. 6.
    H.B. Lan, H.Z. Liu, J. Nanosci. Nanotechnol. 13(5), 3145 (2013)CrossRefGoogle Scholar
  7. 7.
    J.J. Dumond, H.Y. Low, J. Vac. Sci. Technol. B 30(1), 010801 (2012)CrossRefGoogle Scholar
  8. 8.
    J.G. Ok, S.H. Ahn, M.K. Kwak, L.J. Guo, J. Mater. Chem. C 1(46), 7681 (2013)CrossRefGoogle Scholar
  9. 9.
    S.H. Ahn, L.J. Guo, Adv. Mater. 20(11), 2044 (2008)CrossRefGoogle Scholar
  10. 10.
    S.H. Ahn, L.J. Guo, ACS Nano 3(8), 2304 (2009)CrossRefGoogle Scholar
  11. 11.
    J.G. Ok, H.S. Youn, M.K. Kwak, K.T. Lee, Y.J. Shin, L.J. Guo, A. Greenwald, Y.S. Liu, Appl. Phys. Lett. 101(22), 4 (2012)CrossRefGoogle Scholar
  12. 12.
    H.J. Park, M.G. Kang, S.H. Ahn, L.J. Guo, Adv. Mater. 22(35), E247 (2010)CrossRefGoogle Scholar
  13. 13.
    S.H. Ahn, J.S. Kim, L.J. Guo, J. Vac. Sci. Technol. B 25(6), 2388 (2007)CrossRefGoogle Scholar
  14. 14.
    S.H. Ahn, L.J. Guo, Nano Lett. 9(12), 4392 (2009)CrossRefADSGoogle Scholar
  15. 15.
    J.G. Ok, H.J. Park, M.K. Kwak, C.A. Pina-Hernandez, S.H. Ahn, L.J. Guo, Adv. Mater. 23(38), 4444 (2011)CrossRefGoogle Scholar
  16. 16.
    S.H. Ahn, J.G. Ok, M.K. Kwak, K.T. Lee, J.Y. Lee, L.J. Guo, Adv. Funct. Mater. 23(37), 4739 (2013)Google Scholar
  17. 17.
    J.G. Ok, A. Panday, T. Lee, L.J. Guo, Nanoscale 6(24), 14636 (2014)CrossRefADSGoogle Scholar
  18. 18.
    C. Ross, Annu. Rev. Mater. Res. 31, 203 (2001)CrossRefADSGoogle Scholar
  19. 19.
    C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Nature 445(7129), 749 (2007)CrossRefADSGoogle Scholar
  20. 20.
    H.J. Park, M.G. Kang, L.J. Guo, ACS Nano 3(9), 2601 (2009)CrossRefGoogle Scholar
  21. 21.
    M.K. Kwak, J.G. Ok, S.H. Lee, L.J. Guo, Mater. Horiz. 2(1), 86 (2015)CrossRefGoogle Scholar
  22. 22.
    S.J. Choi, H.N. Kim, W.G. Bae, K.Y. Suh, J. Mater. Chem. 21(38), 14325 (2011)CrossRefGoogle Scholar
  23. 23.
    C.R. Martin, Science 266(5193), 1961 (1994)CrossRefADSGoogle Scholar
  24. 24.
    T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, Adv. Mater. 19(7), 917 (2007)CrossRefGoogle Scholar
  25. 25.
    C.J. Hawker, T.P. Russell, MRS Bull. 30(12), 952 (2005)CrossRefGoogle Scholar
  26. 26.
    F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990)CrossRefADSGoogle Scholar
  27. 27.
    E. Huang, L. Rockford, T.P. Russell, C.J. Hawker, Nature 395(6704), 757 (1998)CrossRefADSGoogle Scholar
  28. 28.
    D.Y. Ryu, K. Shin, E. Drockenmuller, C.J. Hawker, T.P. Russell, Science 308(5719), 236 (2005)CrossRefADSGoogle Scholar
  29. 29.
    J.N.L. Albert, T.H. Epps, Mater. Today 13(6), 24 (2010)CrossRefGoogle Scholar
  30. 30.
    S.W. Hong, X.D. Gu, J. Huh, S.G. Xiao, T.P. Russell, ACS Nano 5(4), 2855 (2011)CrossRefGoogle Scholar
  31. 31.
    K.J. Morton, G. Nieberg, S. Bai, S.Y. Chou, Nanotechnology 19(34), 345301 (2008)CrossRefGoogle Scholar
  32. 32.
    C. Pina-Hernandez, L.J. Guo, P.-F. Fu, ACS Nano 4(8), 4776 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Pina-Hernandez, P.-F. Fu, L.J. Guo, ACS Nano 5(2), 923 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Asefa, M.J. MacLachlan, H. Grondey, N. Coombs, G.A. Ozin, Angew. Chem. 112(10), 1878 (2000)CrossRefGoogle Scholar
  35. 35.
    D. Morecroft, J.K. Yang, S. Schuster, K.K. Berggren, Q. Xia, W. Wu, R.S. Williams, J. Vac. Sci. Technol. B 27(6), 2837 (2009)CrossRefGoogle Scholar
  36. 36.
    S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, J. Vac. Sci. Technol. B 15(6), 2897 (1997)CrossRefGoogle Scholar
  37. 37.
    E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, Adv. Mater. 9(9), 741 (1997)CrossRefGoogle Scholar
  38. 38.
    B.K. Lee, N.G. Cha, L.Y. Hong, D.P. Kim, H. Tanaka, H.Y. Lee, T. Kawai, Langmuir 26(18), 14915 (2010)CrossRefGoogle Scholar
  39. 39.
    Y.J. Shin, Y.-K. Wu, L.J. Guo, Nanotechnology 24(25), 255302 (2013)CrossRefADSGoogle Scholar
  40. 40.
    C. Pina-Hernandez, V. Lacatena, G. Calafiore, S. Dhuey, K. Kravtsov, A. Goltsov, D. Olynick, V. Yankov, S. Cabrini, C. Peroz, Nanotechnology 24(6), 065301 (2013)CrossRefADSGoogle Scholar
  41. 41.
    R. Ganesan, J. Dumond, M.S. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6(2), 1494 (2012)CrossRefGoogle Scholar
  42. 42.
    S.-W. Ahn, K.-D. Lee, J.-S. Kim, S.H. Kim, J.-D. Park, S.-H. Lee, P.-W. Yoon, Nanotechnology 16(9), 1874 (2005)CrossRefADSGoogle Scholar
  43. 43.
    Y.J. Shin, C. Pina-Hernandez, Y.-K. Wu, J.G. Ok, L.J. Guo, Nanotechnology 23(34), 344018 (2012)CrossRefGoogle Scholar
  44. 44.
    Y.J. Shin, Y.K. Wu, K.T. Lee, J.G. Ok, L.J. Guo, Adv. Opt. Mater. 1(11), 863 (2013)CrossRefGoogle Scholar
  45. 45.
    A.E. Hollowell, L.J. Guo, Adv. Opt. Mater. 1(4), 343 (2013)CrossRefGoogle Scholar
  46. 46.
    A. Boltasseva, J. Opt. Pure Appl. Opt. 11(11), 114001 (2009)CrossRefADSGoogle Scholar
  47. 47.
    B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N.S. Sariciftci, I. Riedel, V. Dyakonov, J. Parisi, Appl Phys Mater. Sci Process. 79(1), 1 (2004)CrossRefADSGoogle Scholar
  48. 48.
    Z. Chen, B. Cotterell, W. Wang, E. Guenther, S.J. Chua, Thin Solid Films 394(1–2), 202 (2001)Google Scholar
  49. 49.
    M.W. Rowell, M.A. Topinka, M.D. McGehee, H.J. Prall, G. Dennler, N.S. Sariciftci, L.B. Hu, G. Gruner, Appl. Phys. Lett. 88(23), 233506 (2006)CrossRefADSGoogle Scholar
  50. 50.
    M.G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, IEEE J. Sel. Top. Quantum Electron. 16(6), 1807 (2010)CrossRefGoogle Scholar
  51. 51.
    M.G. Kang, M.S. Kim, J.S. Kim, L.J. Guo, Adv. Mater. 20(23), 4408 (2008)CrossRefGoogle Scholar
  52. 52.
    M.G. Kang, H.J. Park, S.H. Ahn, L.J. Guo, Sol. Energy Mater. Sol. Cells 94(6), 1179 (2010)CrossRefGoogle Scholar
  53. 53.
    H.J. Park, T. Xu, J.Y. Lee, A. Ledbetter, L.J. Guo, ACS Nano 5(9), 7055 (2011)CrossRefGoogle Scholar
  54. 54.
    J.G. Ok, M.K. Kwak, C.M. Huard, H.S. Youn, L.J. Guo, Adv. Mater. 25(45), 6554 (2013)CrossRefGoogle Scholar
  55. 55.
    M.K. Kwak, J.G. Ok, J.Y. Lee, L.J. Guo, Nanotechnology 23(34), 6 (2012)CrossRefGoogle Scholar
  56. 56.
    H.A. Atwater, A. Polman, Nat. Mater. 9(3), 205 (2010)CrossRefADSGoogle Scholar
  57. 57.
    E. Ozbay, Science 311(5758), 189 (2006)CrossRefADSGoogle Scholar
  58. 58.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424(6950), 824 (2003)CrossRefADSGoogle Scholar
  59. 59.
    M.G. Kang, T. Xu, H.J. Park, X.G. Luo, L.J. Guo, Adv. Mater. 22(39), 4378 (2010)CrossRefGoogle Scholar
  60. 60.
    H.J. Park, H. Kim, J.Y. Lee, T. Lee, L.J. Guo, Energy Environ. Sci. 6(7), 2203 (2013)CrossRefGoogle Scholar
  61. 61.
    H.J. Park, J.Y. Lee, T. Lee, L.J. Guo, Adv. Energy Mater. 3(9), 1135 (2013)CrossRefGoogle Scholar
  62. 62.
    W.A. Luhman, R.J. Holmes, Adv. Funct. Mater. 21(4), 764 (2011)CrossRefGoogle Scholar
  63. 63.
    H.J. Park, L.J. Guo, Chin. Chem. Lett. 26, 419 (2015)Google Scholar
  64. 64.
    H. Youn, H.J. Park, L.J. Guo, Energy Technol. 3, 340 (2015)Google Scholar
  65. 65.
    T. Xu, Y.K. Wu, X.G. Luo, L.J. Guo, Nat. Commun. 1, 59 (2010)ADSGoogle Scholar
  66. 66.
    Y.K.R. Wu, A.E. Hollowell, C. Zhang, L.J. Guo, Sci. Rep. 3, 1194 (2013)Google Scholar
  67. 67.
    Y.J. Shin, C. Pina-Hernandez, Y.K. Wu, J.G. Ok, L.J. Guo, Nanotechnology 23(34), 6 (2012)CrossRefGoogle Scholar
  68. 68.
    M.G. Kang, L.J. Guo, Adv. Mater. 19(10), 1391 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Automotive EngineeringSeoul National University of Science and TechnologySeoulKorea
  2. 2.Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Division of Energy Systems ResearchAjou UniversitySuwonKorea
  4. 4.Department of Mechanical Engineering; Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations