Advertisement

Applied Physics A

, Volume 120, Issue 1, pp 357–367 | Cite as

Heat accumulation in microdrilled glass from ultraviolet laser ablation

  • Hirofumi Hidai
  • Souta Matsusaka
  • Akira Chiba
  • Noboru Morita
Article

Abstract

We present numerical and experimental studies of heat accumulation during high-aspect-ratio ultraviolet laser microdrilling of glass. The dependence on pulse repetition rate of the ablation threshold was studied. The rate determines the amount of heat accumulation and temperature variation across the illuminated area. No change in the glass was observed for pulse energies below 1 µJ at 1 kHz; melting occurred at 0.3 µJ, with ablation at 0.7 µJ at 20 kHz. Also, the hole depth doubled when the pulse repetition rate was increased from 1 to 20 kHz. Moreover, the fluence of ~4 J/cm2 that passed through drilled holes at 1 kHz decreased to ~1 J/cm2 at 20 kHz.

Keywords

Drilling Repetition Rate Pulse Energy Laser Energy Pulse Repetition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the support of the Advanced Machining Technology and Development Association (AMTDA) and the Japan Science and Technology Agency (JST) under the Development of Innovative Seeds, Potentiality Verification Stage.

References

  1. 1.
    Z.L. Li, T.T. Lin, P.M. Moran, Appl. Phys. A 81, 753 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ancona, F. Roser, K. Rademaker, J. Limpert, S. Nolte, A. Tunnermann, Opt. Express 16, 8958 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    F. Brygo, A. Semerok, R. Oltra, J.M. Weulersse, S. Fomichev, Appl. Surf. Sci. 252, 8314 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S. Hiramoto, M. Moriyasu, S. Takeno, Effect of beam-plasma interaction on characteristics of drilling: study on materials processing by high peak short pulse CO2 laser (Report 2). Q. J. Jpn. Weld. Soc. 11, 75 (1993)CrossRefGoogle Scholar
  5. 5.
    J. Finger, M. Reininghaus, Opt. Express 22, 18790 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Weck, T.H.R. Crawford, D.S. Wilkinson, H.K. Haugen, J.S. Preston, Appl. Phys. A 90, 537 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    F. Di Niso, C. Gaudiuso, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugarà, Opt. Express 22, 12200 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Opt. Express 22, 11312 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C.B. Schaffer, J.F. García, E. Mazur, Appl. Phys. A 76, 351 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S. Karimelahi, L. Abolghasemi, P. Herman, Appl. Phys. A 114, 91 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Express 13, 4708 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 103, 257 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    T. Tamaki, W. Watanabe, K. Itoh, Opt. Express 14, 10460 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    C. S. Nielsen, P. Balling, J. Appl. Phys. 99, 093101 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, S. Nolte, Opt. Express 20, 27147 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, S. Nolte, Phys. Procedia 41, 431 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    D. Esser, S. Rezaei, J. Li, P.R. Herman, J. Gottmann, Opt. Express 19, 25632 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    A. Salleo, T. Sands, F.Y. Genin, Appl. Phys. A 71, 601 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos, Appl. Phys. A 79, 605 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    X. Zhao, Y. Shin, Appl. Phys. A Mater. Sci. Process. 104, 713 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A 84, 47 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, H. Hugel, Proc. SPIE 4184, 534 (2001)ADSGoogle Scholar
  24. 24.
    Personal communication, Provided by the manufacturerGoogle Scholar
  25. 25.
    R.I. Golyatina, A.N. Tkachev, S.I. Yakovlenko, Laser Phys. 14, 1429 (2004)Google Scholar
  26. 26.
    S.I. Yakovlenko, Laser Phys. 16, 1273 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Schott datasheet, http://edit.schott.com/advanced_optics/english/abbe_datasheets/schott_ datasheet_n-bk7.pdf. Accessed 24 January 2015
  28. 28.
    R.R. Gattass, L.R. Cerami, E. Mazur, Opt. Express 14, 5279 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M.B. Volf, Chemical approach to glass (Elsevier, Amsterdam, 1984)Google Scholar
  30. 30.
    J.E. Shelby, Introduction to glass science and technology, 2nd edn. (Royal Society of Chemistry, Cambridge, 2005)Google Scholar
  31. 31.
    D. Baeuerle, Laser Processing and Chemistry, 3rd edn. (Springer, New York, 2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hirofumi Hidai
    • 1
  • Souta Matsusaka
    • 1
  • Akira Chiba
    • 1
  • Noboru Morita
    • 1
  1. 1.Department of Mechanical EngineeringChiba UniversityChibaJapan

Personalised recommendations