Advertisement

Applied Physics A

, Volume 120, Issue 1, pp 121–125 | Cite as

Role of deposition temperature on performance of HfO x -based resistive switching

  • Tingting Guo
  • Tingting TanEmail author
  • Zhengtang Liu
Article

Abstract

The HfO x films grown on Pt substrates were deposited at different temperatures by RF magnetron sputtering. The crystal quality of HfO x film increased with the increasing deposition temperature. Typical bipolar resistive switching (RS) characteristics were observed in prepared samples. The sample deposited at 100 °C showed the best RS performance with large ON/OFF ratio, concentrated distribution of switching voltages and good reliability. Reset-first RS behavior was observed for the 300 °C deposited sample due to the high density of defects and the diffusion of Cu in the film. The distinct RS behaviors are closely related to the microproperties of the films. The possible switching mechanisms were discussed.

Keywords

HfO2 Deposition Temperature Resistive Switching Switching Voltage Space Charge Limited Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51202196), the National Aerospace Science Foundation of China (No. 2013ZF53067), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ6204), the Fundamental Research Funds for the Central Universities (No. 3102014JCQ01032) and the 111 Project (No. B08040).

References

  1. 1.
    H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, F. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, M.J. Tsai, C. Lien, IEEE Electron Device Lett. 30, 703–705 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Li, G. Zhao, J. Su, E. Shen, Y. Ren, Appl. Phys. A 104, 1069–1073 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    C.H. Jia, Q.C. Dong, W.F. Zhang, J. Alloys Compd. 520, 250–254 (2012)CrossRefGoogle Scholar
  4. 4.
    D.S. Lee, Y.H. Sung, I.G. Lee, J.G. Kim, H. Sohn, D.H. Ko, Appl. Phys. A 102, 997–1001 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, Nanotechnology 21, 045202 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    I. Salaoru, T. Prodromakis, A. Khiat, C. Toumazou, Appl. Phys. Lett. 102, 013506 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin, C.T. Chou, Y.J. Lee, J. Appl. Phys. 109, 084104 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    D.L. Xu, Y. Xiong, M.H. Tang, B.W. Zeng, J.Q. Li, L. Liu, L.Q. Li, S.A. Yan, Z.H. Tang, Microelectron. Eng. 116, 22–25 (2014)CrossRefGoogle Scholar
  9. 9.
    H.Y. Jeong, Y.I. Kim, J.Y. Lee, S.Y. Choi, Nanotechnology 21, 115203 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    C. Chen, S. Gao, F. Zeng, G.S. Tang, S.Z. Li, C. Song, H.D. Fu, F. Pan, J. Appl. Phys. 114, 014502 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Mosbah, M.S. Aida, J. Alloys Compd. 515, 149–153 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Sreedhar, M. Hari Prasad Reddy, S. Uthanna, J.F. Pierson, Int. J. ChemTech Res. 6, 1920–1922 (2014)Google Scholar
  14. 14.
    J.J. Yang, J.P. Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 4034–4038 (2010)CrossRefGoogle Scholar
  15. 15.
    J.F. Chang, M.H. Hon, Thin Solid Films 386, 79–86 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, Surf. Coat. Technol. 180–181, 659–662 (2004)CrossRefGoogle Scholar
  17. 17.
    Z.Q. Xu, H. Deng, Y. Li, Q.H. Guo, Y.R. Li, Mater. Res. Bull. 41, 354–358 (2006)CrossRefGoogle Scholar
  18. 18.
    V. Dave, P. Dubey, H.O. Gupta, R. Chandra, AIP Conf. Proc. 1576, 29–32 (2014)ADSGoogle Scholar
  19. 19.
    N. Takahashi, S. Nonobe, T. Nakamura, J. Solid State Chem. 177, 3944–3948 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    S. Xing, N. Zhang, Z. Song, Q. Shen, C. Lin, Microelectron. Eng. 66, 451–456 (2003)CrossRefGoogle Scholar
  21. 21.
    G.D. Wilk, R.M. Wallace, J.M. Anthoy, J. Appl. Phys. 87, 484–492 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    S.Q. Wang, J.W. Mayer, J. Appl. Phys. 64, 4711–4716 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    J. Dong, S.H. Huang, IEEE Trans. Nanotechnol. 13, 594–599 (2014)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Kim, S. Lee, K. Lee, H. Na, I.S. Mok, Y. Kim, D.H. Ko, H. Sohn, Microelectron. Eng. 112, 46–51 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Liu, K. Xu, Vac. Sci. Technol. (China) 24, 321–323 (2004)Google Scholar
  26. 26.
    M. Haemori, T. Nagata, T. Chikyow, Appl. Phys. Express 2, 061401 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    H.C. Tseng, T.C. Chang, J.J. Huang, Y.T. Chen, P.C. Yang, H.C. Huang, D.S. Gan, N.J. Ho, S.M. Sze, M.J. Tsai, Thin Solid Films 520, 1656–1659 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C.Y. Huang, J.H. Jieng, W.Y. Jang, C.H. Lin, T.Y. Tseng, ECS Solid State Lett. 2, P63–P65 (2013)CrossRefGoogle Scholar
  29. 29.
    U. Celano, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Appl. Phys. Lett. 102, 121602 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    L.E. Yu, S. Kim, M.K. Ryu, S.Y. Choi, Y.K. Choi, IEEE Electron Device Lett. 29, 331–333 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Lab of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations