Applied Physics A

, Volume 119, Issue 4, pp 1209–1213 | Cite as

Efficiency enhancement of InGaN/GaN multiple quantum wells with graphene layer

  • Zhen Deng
  • Zishen Li
  • Yang JiangEmail author
  • Ziguang Ma
  • Yutao Fang
  • Yangfeng Li
  • Wenxin Wang
  • Haiqiang Jia
  • Hong Chen


In this work, a novel hybrid graphene/InGaN-based multiple quantum wells (MQWs) structure has been fabricated. Compared to the sample conventional structure (CS), the utilization of graphene transferred on top GaN layer significantly enhances the internal quantum efficiency and relatively photoluminescence intensity. Furthermore, the excitons in the MQWs of sample hybrid structure (HS) have a shorter decay lifetime of 3.4 ns than that of 6.7 ns for sample CS. These results are probably attributed to the free carriers in the graphene layer, which can screen the piezoelectric field in the active region and thus present a free quantum-confined Stark effect-like behavior. Our work demonstrates that the graphene on the top GaN layer can effectively increase the recombination rate in sample HS, which may further improve LEDs’ performance.


Graphene Layer Polarization Field Excitation Power Internal Quantum Efficiency Decay Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Basic Research Program of China (Grant Nos. 2011CB925604) and National Nature Science Foundation (Grant Nos. 11204360, 61210014 and 11374340).


  1. 1.
    F.A. Ponce, D.P. Bour, Nature 386, 351–359 (1997)CrossRefADSGoogle Scholar
  2. 2.
    E.F. Schubert, J.K. Kim, H. Luo, J.Q. Xi, Rep. Prog. Phys. 69, 3069–3099 (2006)CrossRefADSGoogle Scholar
  3. 3.
    S. Nakamura, N. Senoh, N. Iwasa, S.I. Nagahama, Jpn. J. Appl. Phys. Part 2 Lett. 34, L797–L799 (1995)CrossRefGoogle Scholar
  4. 4.
    A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100, 023522 (2006)CrossRefADSGoogle Scholar
  5. 5.
    P.C. Tsai, Y.K. Su, W.R. Chen, C.Y. Huang, Jpn. J. Appl. Phys. 49, 04DG07 (2010)Google Scholar
  6. 6.
    L. Wang, R. Li, Z.W. Yang, L. Ding, T. Yu, N.Y. Liu, L. Liu, W.H. Chen, X.D. Hu, Appl. Phys. Lett. 95, 211104 (2009)CrossRefADSGoogle Scholar
  7. 7.
    Y.A. Chang, Y.T. Kuo, J.Y. Chang, Y.K. Kuo, Opt. Lett. 37, 2205–2207 (2012)CrossRefADSGoogle Scholar
  8. 8.
    R.A. Arif, Y.K. Ee, N. Tansu, Appl. Phys. Lett. 91, 091110 (2007)CrossRefADSGoogle Scholar
  9. 9.
    H.P. Zhao, G.Y. Liu, X.H. Li, G.S. Huang, J.D. Poplawsky, S.T. Penn, V. Dierolf, N. Tansu, Appl. Phys. Lett. 95, 061104 (2009)CrossRefADSGoogle Scholar
  10. 10.
    M.E. Aumer, S.F. LeBoeuf, B.F. Moody, S.M. Bedair, Appl. Phys. Lett. 79, 3803–3805 (2001)CrossRefADSGoogle Scholar
  11. 11.
    M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Y.M. Park, J.K. Son, H.J. Chung, C. Sone, Y. Park, Appl. Phys. Lett. 95, 231917 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, H. Chen, Sci. Rep. 3, 3389 (2013)ADSGoogle Scholar
  14. 14.
    T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, S. Sakai, P. Eliseev, Appl. Phys. Lett. 76, 1737–1739 (2000)CrossRefADSGoogle Scholar
  15. 15.
    R. Smith, B. Liu, J. Bai, T. Wang, Nano Lett. 13, 3042–3047 (2013)CrossRefADSGoogle Scholar
  16. 16.
    M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Nature 429, 642–646 (2004)CrossRefADSGoogle Scholar
  17. 17.
    G. Heliotis, G. Itskos, R. Murray, M.D. Dawson, I.M. Watson, D.D.C. Bradley, Adv. Mater. 18, 334–338 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601–605 (2004)CrossRefADSGoogle Scholar
  19. 19.
    F.H.L. Koppens, D.E. Chang, F.J.G. de Abajo, Nano Lett. 11, 3370–3377 (2011)CrossRefGoogle Scholar
  20. 20.
    L.B. Gao, W.C. Ren, H.L. Xu, L. Jin, Z.X. Wang, T. Ma, L.P. Ma, Z.Y. Zhang, Q. Fu, L.M. Peng, X.H. Bao, H.M. Cheng, Nat. Commun. 3, 699 (2012)CrossRefADSGoogle Scholar
  21. 21.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefADSGoogle Scholar
  22. 22.
    A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30–35 (2009)CrossRefADSGoogle Scholar
  23. 23.
    S.F. Chichibu, K. Hazu, Y. Ishikawa, M. Tashiro, H. Namita, S. Nagao, K. Fujito, A. Uedono, J. Appl. Phys. 111, 103518 (2012)CrossRefADSGoogle Scholar
  24. 24.
    J.H. Na, R.A. Taylor, K.H. Lee, T. Wang, A. Tahraoui, P. Parbrook, A.M. Fox, S.N. Yi, Y.S. Park, J.W. Choi, J.S. Lee, Appl. Phys. Lett. 89, 253120 (2006)CrossRefADSGoogle Scholar
  25. 25.
    Y.L. Li, R. Huang, Y.H. Lai, Appl. Phys. Lett. 91, 181113 (2007)CrossRefADSGoogle Scholar
  26. 26.
    S.C. Ling, T.C. Lu, S.P. Chang, J.R. Chen, H.C. Kuo, S.C. Wang, Appl. Phys. Lett. 96, 231101 (2010)CrossRefADSGoogle Scholar
  27. 27.
    F.D. Sala, A.D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, J. Jancu, Appl. Phys. Lett. 74, 2002 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhen Deng
    • 1
    • 2
  • Zishen Li
    • 3
  • Yang Jiang
    • 1
    Email author
  • Ziguang Ma
    • 1
  • Yutao Fang
    • 1
  • Yangfeng Li
    • 1
  • Wenxin Wang
    • 1
  • Haiqiang Jia
    • 1
  • Hong Chen
    • 1
  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Key Laboratory for the Physics and Chemistry of Nanodevices, Department of ElectronicsPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations