Advertisement

Applied Physics A

, Volume 120, Issue 1, pp 59–66 | Cite as

Thermoelectric sintered glass-ceramics with a Bi2Sr2Co2O x phase

  • Julian LingnerEmail author
  • Ryoji Funahashi
  • Emmanuel Combe
  • Martin Letz
  • Gerhard Jakob
Article

Abstract

Glass-ceramic materials containing Bi2Sr2Co2O x crystals with plate-like structures are prepared by a melting process and a subsequent sintering step after manual quenching. The chemical starting compositions of the samples are Bi2Sr2Co2O x (BSC222), Bi1.8Sr2Co2O x (Bi1.8) and Bi2Sr2Co1.7O x (Co1.7). All three samples are p-type conductors. The electric properties of Seebeck coefficient S and electrical resistivity ρ show only a slight dependence on chemical composition. The Seebeck values increase with increasing temperature, and at T = 873 K, they reach S = 180, 176 and 167 µV/K, respectively. The electrical resistivity slightly decreases with temperature for two samples and increases for the Co1.7 sample. The thermal conductivity for all measured samples at this temperature is around κ = 0.8 W/(m K). The figure of merit ZT increases with temperature for all samples. The materials reach a ZT value of 0.03 at T = 873 K.

Keywords

Electrical Resistivity Power Factor Thermoelectric Property PbTe Bi2Te3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Dr. Lydia Sosa-Vargas of the National Institute of Advanced Industrial Science and Technology (AIST Ikeda, Osaka) for her help and guidance during the XRD measurements.

References

  1. 1.
    International Energy Outlook 2013, U.S. Energy Information Administration Report Number: DOE/EIA-0484 (2013)Google Scholar
  2. 2.
    S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23(8), 913–935 (2003)CrossRefGoogle Scholar
  3. 3.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H. Ohta, K. Sugiora, K. Koumoto, Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47(19), 8429–8436 (2008)CrossRefGoogle Scholar
  5. 5.
    I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystal. Phys. Rev. B 56(20), 685–687 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Wang, N.S. Rogado, R.J. Cava, N.P. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423(6938), 425–428 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    R. Funahashi, M. Shikano, Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459–1461 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R. Funahashi, I. Matsubara, S. Sodeoka, Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76(17), 2385–2387 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou, Thermoelectric properties of Bi2.2−xPbxSr2Co2Oy system. J. Appl. Phys. 91(7), 4344–4347 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    S. Populoh, M.H. Aguirre, O.C. Brunker, K. Galazka, Y. Lu, A. Weidenkaff, High figure of merit in (Ti, Zr, Hf)NiSn half-Heusler alloys. Scr. Mater. 66, 1073–1076 (2012)CrossRefGoogle Scholar
  12. 12.
    O. Jankovský, D. Sedmidubský, Z. Sofer, Phase diagram of the pseudobinary system Bi–Co–O. J. Eur. Ceram. Soc. 33(13–14), 2699–2704 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Sotelo, M.A. Torres, G. Constantinescu, S. Rasekh, J.C. Diez, M.A. Madrea, Effect of Ag addition on the mechanical and thermoelectric performances of annealed Bi2Sr2Co1.8Ox textured ceramics. J. Eur. Ceram. Soc. 32(14), 3745–3751 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Funahashi, Unpublished data (2014)Google Scholar
  15. 15.
    N. Cusack, P. Kendrall, The absolute scale of thermoelectric power at high temperature. Proc. Phys. Soc. Lond. 72(5), 898–901 (1958)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Klein, D. Pelloquin, S. Hébert, A. Maignan, J. Hejtmanek, Thermoelectric [Sr2(Bi, Co)n − 2On]RS[CoO2]1.8 layer cobaltates—the role of the intergrowth between the n = 3 and n = 4 terms. J. Appl. Phys. 98(1), 013701 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Julian Lingner
    • 1
    • 3
    Email author
  • Ryoji Funahashi
    • 2
  • Emmanuel Combe
    • 2
  • Martin Letz
    • 3
  • Gerhard Jakob
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.National Institute of Advanced Industrial Science and TechnologyOsakaJapan
  3. 3.Material DevelopmentSCHOTT AGMainzGermany

Personalised recommendations