Applied Physics A

, Volume 120, Issue 1, pp 167–173 | Cite as

Depth profiles of indentation hardness and dislocation mobility in MgO single crystals irradiated with swift 84Kr and 14N ions

  • R. ZabelsEmail author
  • I. Manika
  • K. Schwartz
  • J. Maniks
  • R. Grants
  • M. Sorokin
  • M. Zdorovets


The depth dependence of damage and modification of micromechanical properties in MgO single crystals irradiated with 150 MeV 84Kr and 24.5 MeV 14N ions (specific energy 1.75 MeV/u) at fluences up to 1015 ions/cm2 has been studied. The effects of ion-induced increase in hardness and reduction in dislocation mobility, magnitude of which varies along the ion range, were observed. These effects are related to ion-induced dislocations which were revealed by chemical etching. The results confirm a joint contribution of electronic excitations and atomic displacements by elastic collisions in the structural damage of MgO. The excitation mechanism in hardening dominates in the incoming part of ion range (up to the Bragg’s maximum), while the role of impact mechanism becomes dominant only at the end of ion range.


Color Center Dislocation Mobility Radiation Defect Nanoindentation Test Frenkel Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work has been supported by the ESF project Nr. 2013/0015/1DP/ and the National Research Program IMIS2.


  1. 1.
    N. Itoh, A.M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    A. Lushchik, E. Feldbach, S. Galajev, T. Kärner, P. Liblik, Ch. Lushchik, A. Maaroos, V. Nagirnyi, E. Vasil`chenko, Radiat. Meas. 42, 92 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Lushchik, Ch. Lushchik, K. Schwartz, F. Savikhin, E. Shablonin, A. Shugai, E. Vasil’chenko, Nucl. Instr. Meth. B 277, 40 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    I. Richter, R. Gheewala, S.D. Smith, J. Kenny, K.Sickafus Valdez, J. Nucl. Mater. 382, 176 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M.Y. Khan, L.M. Brown, M.M. Chaudhri, J. Phys. D Appl. Phys. 25, 257 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    C. Kinosita, in Radiation Effects in Solids. NATO Science Series, eds. by K. Sickafus, E. Kotomin, B.P. Uberuaga (Springer, Netherlands, 2007) vol. 235, pp. 45–64Google Scholar
  7. 7.
    J. Ohta, K. Suzuki, T. Suzuki, J. Mater. Res. 9, 2953 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    I. Manika, J. Maniks, K. Schwartz, C. Trautmann, Nucl. Instr. Meth. B 196, 299 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    I. Manika, J. Maniks, K. Schwartz, J. Phys. D: Appl. Phys. 41, 074008 (2008)CrossRefGoogle Scholar
  10. 10.
    F. Ziegler, P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon Press, New York, 1985)CrossRefGoogle Scholar
  11. 11.
    I. Manika, J. Maniks, K. Schwartz, Nucl. Instr. Meth. B 266, 2741 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A.S. Keh, J. Appl. Phys. 31, 1538 (1960)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Gaillard, C. Tromas, J. Woirgard, Acta Mater. 51, 1059 (2003)CrossRefGoogle Scholar
  14. 14.
    J.J. Gilman, W.G. Johnston, G.W. Sears, Appl. Phys. 29, 747 (1958)CrossRefGoogle Scholar
  15. 15.
    K. Sangwal, T.C. Patel, M.D. Kotak, J. Mater. Sci. 14, 509 (1979)Google Scholar
  16. 16.
    B.D. Evans, J. Comas, P.R. Malmberg, Phys. Rev. B 6, 2453 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    M.V. Sorokin, R.M. Papaleo, K. Schwart, Appl. Phys. A 97, 143 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J. Maniks, I. Manika, R. Grants, R. Zabels, K. Schwartz, M. Sorokin, R.M. Papaleo, Appl. Phys. A 104, 1121 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    A. Lushchik, T. Kärner, Ch. Lushchik, K. Schwartz, F. Savikhin, E. Shablonin, A. Shugai, E. Vasil`chenko, Nucl. Instr. Meth. B 266, 200 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Maniks, I. Manika, R. Zabels, R. Grants, E. Tamanis, K. Schwartz, Nucl. Instr. Meth. B 282, 81 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Dauletbekova, J. Maniks, I. Manika, R. Zabels, A.T. Aklibekov, M.V. Zdorovets, Y. Bikert, K. Schwartz, Nucl. Instr. Meth. B 286, 56 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Zabels, I. Manika, K. Schwartz, J. Maniks, R. Grants, Nucl. Instr. Meth. B 326, 318 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    P. Thevenard, G. Guiraud, C.H.S. Dupuy, B. Delaunay, Radiat. Eff. 32, 83 (1977)CrossRefGoogle Scholar
  24. 24.
    M.V. Sorokin, K. Schwartz, C. Trautmann, A. Dauletbekova, A.S. El-Said, Nucl. Instr. Meth. B 326, 307 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    I. Manika, J. Maniks, K. Schwartz, M. Toulemonde, C. Trautmann, Nucl. Instr. Meth. B 209, 93 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    M.V. Sorokin, K. Schwartz, K.O. Voss, O. Rosmej, A.E. Volkov, R. Neumann, Nucl. Instr. Meth. B 285, 24 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Zinkle, V.A. Skuratov, Nucl. Instr. Meth. B 141, 737 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Akchurin, V.R. Regel, Chem. Rev. 23, 59 (1998)Google Scholar
  29. 29.
    M.M. Chaudrhi, Phil. Mag. Lett. 77, 7 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    J. Maniks, R. Zabels, I. Manika, IOP Conf. ser. Mater. Sci. Eng. 38, 012017 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Zabels
    • 1
    Email author
  • I. Manika
    • 1
  • K. Schwartz
    • 2
  • J. Maniks
    • 1
  • R. Grants
    • 1
  • M. Sorokin
    • 3
  • M. Zdorovets
    • 4
  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  2. 2.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  3. 3.National Research Centre Kurchatov InstituteMoscowRussia
  4. 4.Institute of Nuclear PhysicsAlmatyKazakhstan

Personalised recommendations