Automatic registration and mosaicking of technical images of Old Master paintings

  • 497 Accesses

  • 29 Citations


The registration of technical art conservation images of Old Master paintings presents unique challenges. Specifically, X-radiographs and reflective infrared (1000–2500 nm) images reveal shifted, or new, compositional elements not visible on the surface of artworks. Here, we describe a new multimodal registration and mosaicking algorithm that is capable of providing accurate alignment of a variety of types of images, such as the registration of multispectral reflective infrared images, X-radiographs, hyperspectral image cubes, and X-ray fluorescence image cubes to reference color images taken at high spatial sampling (300–500 pixels per inch), even when content differences are present, and a validation study has been performed to quantify the algorithm’s accuracy. Key to the algorithm’s success is the use of subsets of wavelet images to select control points and a novel method for filtering candidate control-point pairs. The algorithm has been used to register more than 100 paintings at the National Gallery of Art, D.C. and The Art Institute of Chicago. Many of the resulting registered datasets have been published in online catalogues, providing scholars additional information to further their understanding of the paintings and the working methods of the artists who painted them.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Personal communication with R. Erdmann, 2013.

  2. 2.

    A phase image is produced by computing the 2-D Fourier transform of an image then computing the inverse Fourier transform of the result using only the phase information (i.e., using unit magnitude) [20].

  3. 3.

    While the matching is performed using phase images, Fig. 5a uses the color image and IR image to show more clearly the control points over their corresponding regions.

  4. 4.

    The vertical pixel disparity is also computed, and analyzed, in the same manner as the horizontal pixel disparity.

  5. 5.

    X-radiographs are scanned at 500 pixels per inch, and thus the increase in disparity corresponds to a decrease in pixel size relative to the IR datasets.

  6. 6.

    IR image frames are generally registered at a spatial sampling near 280 pixels per inch, so the maximum shift in that case would be closer to 0.36 pixels.


  1. 1.

    E. Walmsley, C. Metzger, J. Delaney, C. Fletcher, Stud. Conserv. (1994). doi:10.1179/sic.1994.39.4.217

  2. 2.

    J. Delaney, E. Walmsley, B. Berrie, C. Fletcher, (Sackler NAS Colloquium) Scientic Examination of Art: Modern Techniques in Conservation and Analysis (National Academies Press, Washington, D.C., 2005)

  3. 3.

    A. Wheelock Jr. Johannes Vermeer/Girl with the Red Hat/c. 1665/1666 (NGA Online Editions, 2014), Accessed 21 May 2014

  4. 4.

    D. Conover, J. Delaney, P. Ricciardi, M. Loew, Proc. SPIE (2011). doi:10.1117/12.872634

  5. 5.

    K. Martinez, J. Cupitt, IEEE Proc. (2005). doi:10.1109/ICIP.2005.1530120

  6. 6.

    P. Ravines, K. Baum, N. Cox, S. Welch, M. Helguera, J. Am. Inst. Conserv. (2014). doi:10.1179/1945233013Y.0000000014

  7. 7.

    The Bosch Research and Conservation Project (BRCP), Image processing and digital infrastructure (BRDP, 2014), Accessed 21 May 2014

  8. 8.

    D. Bertani, M. Cetica, P. Poggi, G. Puccioni, E. Buzzegoli, D. Kunzelman, S. Cecchi, Stud. Conserv. (1990). doi:10.1179/sic.1990.35.3.113

  9. 9.

    C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Acc. Chem. Res. (2010). doi:10.1021/ar900268t

  10. 10.

    D. Saunders, H. Liang, R. Billinge, J. Cupitt, N. Atkinson, Stud. Conserv. (2006). doi:10.1179/sic.2006.51.4.277

  11. 11.

    Opus Instruments, Specification of Osiris infrared reflectography cameras (Opus Instruments, 2014), Accessed 21 May 2014

  12. 12.

    M. Alfeld, J. Pedroso, M. van Eikema, Hommes, G. Vander Snickt, G. Tauber, J. Blass, M. Haschke, K. Erler, J. Dik, K. Janssens. J. Anal. At. Spectrom (2013). doi:10.1039/C3JA30341A

  13. 13.

    J. Delaney, P. Ricciardi, L. Glinsman, M. Facini, M. Thoury, M. Palmer, E.R. de la Rie, Stud. Conserv. (2014). doi:10.1179/2047058412Y.0000000078

  14. 14.

    K. Dooley, S. Lomax, J. Zeibel, C. Miliani, P. Ricciardi, A. Hoenigswald, M. Loew, J. Delaney, Analyst (2013). doi:10.1039/c3an00926b

  15. 15.

    P. Ricciardi, J. Delaney, M. Facini, J. Zeibel, M. Picollo, S. Lomax, M. Loew, Angew. Chem. Int. Ed. (2012). doi:10.1002/anie.201200840

  16. 16.

    K. Dooley, D. Conover, L. Glinsman, J. Delaney, Angew. Chem. Int. Ed. (2014). doi:10.1002/anie.201407893

  17. 17.

    L. Brown, ACM Comput. Survey. (1992). doi:10.1145/146370.146374

  18. 18.

    B. Zitová, J. Flusser, Image Vis. Comput. (2003). doi:10.1016/S0262-8856(03)00137-9

  19. 19.

    G. Hong, Y. Zhang, Comput. Geosci. (2008). doi:10.1016/j.cageo.2008.03.005

  20. 20.

    R. Gonzalez, R. Woods, Digital Image Processing, 3rd edn. (Pearson Prentice Hall, New Jersey, USA, 2008)

  21. 21.

    G. Wolberg, Digital ImageWarping (IEEE Computer Society Press, Washington, D.C., USA, 1990)

  22. 22.

    D. Conover, J. Delaney, M. Loew, Proc. SPIE (2013). doi:10.1117/12.2021318

  23. 23.

    E.M. Gifford, C. Metzger, J. Delaney, Facture 1, 128–153 (2013)

  24. 24.

    A. Wheelock Jr., Judith Leyster/Self-portrait/c. 1630, (NGA Online Editions, 2014), Accessed 21 May 2014

  25. 25.

    A. Wheelock Jr., Dutch paintings of the seventeenth century (NGA Online Editions, 2014), Accessed 21 May 2014

  26. 26.

    G. Groom, J. Shaw, eds., Monet paintings and drawings at the Art Institute of Chicago (Art Institute of Chicago, 2014), Accessed 21 May 2014

  27. 27.

    G. Groom, J. Shaw, eds., Renoir paintings and drawings at the Art Institute of Chicago (Art Institute of Chicago, 2014), Accessed 21 May 2014

Download references


The authors acknowledge funding from the National Science Foundation (award 1041827). J.K.D. and D.M.C. acknowledge funding from the Andrew W. Mellon and Samuel H. Kress Foundations, and D.M.C. acknowledges funding from the ARCS Foundation. The authors are grateful to Kimberly Schenk, Elizabeth Walmsley, Catherine Metzger, Melanie Gifford, Barbara Berrie, and Mervin Richards of the National Gallery of Art (Washington, D.C.), and Kelly Keegan of the Art Institute of Chicago.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Correspondence to John K. Delaney or Murray H. Loew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (AVI 12604 kb)

Supplementary material 4 (AVI 31204 kb)

Supplementary material 1 (AVI 24832 kb)

Supplementary material 2 (AVI 12604 kb)

Supplementary material 3 (AVI 14494 kb)

Supplementary material 4 (AVI 31204 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conover, D.M., Delaney, J.K. & Loew, M.H. Automatic registration and mosaicking of technical images of Old Master paintings. Appl. Phys. A 119, 1567–1575 (2015) doi:10.1007/s00339-015-9140-1

Download citation


  • Color Image
  • Fiducial Marker
  • Template Image
  • Bicubic Interpolation
  • Image Cube